切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2025, Vol. 18 ›› Issue (05) : 796 -801. doi: 10.3877/cma.j.issn.1674-6902.2025.05.024

论著

血清生物标志物联合检测对支气管哮喘患儿生物靶向治疗效果的预测意义
刘丽辉1, 白玉新1,(), 张进2, 冯巍1, 黄琰琰1, 邹梦斯1, 刘彩红1   
  1. 1518112 深圳,深圳大学第一附属医院·深圳市第二人民医院儿科
    2518002 深圳,深圳市罗湖区人民医院儿科
  • 收稿日期:2025-05-28 出版日期:2025-10-25
  • 通信作者: 白玉新

Predictive significance of combined detection of serum biomarkers in effect of biological targeted therapy on children with bronchial asthma

Lihui Liu1, Yuxin Bai1,(), Jin Zhang2, Wei Feng1, Yanyan Huang1, Mengsi Zou1, Caihong Liu1   

  1. 1Department of Pediatrics, the First Affiliated Hospital of Shenzhen University·Shenzhen Second People′s Hospital, Shenzhen 518112
    2Pediatrics Department, Luohu District People′s Hospital, Shenzhen 518002, China
  • Received:2025-05-28 Published:2025-10-25
  • Corresponding author: Yuxin Bai
引用本文:

刘丽辉, 白玉新, 张进, 冯巍, 黄琰琰, 邹梦斯, 刘彩红. 血清生物标志物联合检测对支气管哮喘患儿生物靶向治疗效果的预测意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 796-801.

Lihui Liu, Yuxin Bai, Jin Zhang, Wei Feng, Yanyan Huang, Mengsi Zou, Caihong Liu. Predictive significance of combined detection of serum biomarkers in effect of biological targeted therapy on children with bronchial asthma[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2025, 18(05): 796-801.

目的

分析血清生物标志物联合检测对支气管哮喘(bronchial asthma, BA)患儿生物靶向治疗的预测意义。

方法

选取我院2022年3月至2025年4月收治的64例BA患儿,根据奥马珠单抗治疗16周后疗效分组,治疗有效为观察组48例,治疗无效为对照组16例,比较两组患儿临床资料、第1秒呼气容积(forced expiratory volume in one second, FEV1)、第1秒用力呼气量与用力肺活量比值(forced expiratory volume in one second /forced vital capacity, FEV1/FVC)、呼气峰值流速(peak expiratory flow, PEF)、血清生物标志物免疫球蛋白E(Immunoglobulin E, IgE)、白细胞介素(interleukin, IL)-4、IL-6、IL-17A、IL-2R,采用Logistic回归分析BA患儿生物靶向治疗反应性的影响因素,绘制受试者特征曲线(receiver characteristic curve, ROC)判断预测意义。

结果

观察组病情轻度患儿23例(47.92%)、FEV1(94.42±8.54)%高于对照组3例(18.75%)、FEV1(81.53±5.65)%;总IgE(1 102.9±292.5)IU/ml、IL-4(8.86±2.02)pg/ml、IL-6(8.95±2.37)pg/ml、IL-17A(8.62±2.31)pg/ml、IL-2R(164.64±54.16)U/ml低于对照组总IgE(1 677.7±527.9)IU/ml、IL-4(12.78±3.54)pg/ml、IL-6(10.64±3.15)pg/ml、IL-17A(13.39±4.45)pg/ml、IL-2R(248.54±75.39)U/ml(P<0.05)。Logistic回归分析显示,病情严重程度(OR=0.358,95%CI:0.127~1.006)、FEV1(OR=1.238,95%CI: 1.102~1.392)、血清总IgE(OR=0.980,95%CI:1.102~1.392)、IL-2R(OR=0.974,95%CI: 0.954~0.994)、IL-4(OR=0.617,95%CI: 0.402~0.947)是BA患儿生物靶向治疗影响因素。ROC曲线分析显示,血清总IgE、IL-4、IL-2R联合预测BA患儿生物靶向治疗曲线下面积(area under the curve, AUC)为0.896(95%CI: 0.906~0.999),高于血清总IgE、IL-4、IL-2R单独预测AUC 0.683(95%CI: 0.703~0.904)、0.654(95%CI: 0.722~0.917)、0.642(95%CI: 0.676~0.886)。

结论

血清IgE、IL-4、IL-2R水平与BA患儿生物靶向治疗效果呈负相关,血清IgE、IL-4、IL-2R联合预测对BA患儿生物靶向治疗具有临床意义。

Objective

To analyze the predictive significance of combined serum biomarker testing for biological targeted therapy in children with bronchial asthma (BA).

Methods

A total of 64 children with BA admitted to our hospital from March 2022 to April 2025 were selected. Based on the efficacy after 16 weeks of omalizumab treatment, they were divided into two groups: 48 effective cases as the observation group and 16 ineffective cases as the control group. Clinical data, forced expiratory volume in one second (FEV1), forced expiratory volume in one second/forced vital capacity ratio (FEV1/FVC), peak expiratory flow (PEF), and serum biomarkers including immunoglobulin E (IgE), interleukin (IL)-4, IL-6, IL-17A, and IL-2R were compared between the two groups. Logistic regression analysis was used to identify factors influencing the responsiveness of BA children to biological targeted therapy, and receiver operating characteristic (ROC) curves were plotted to evaluate predictive value.

Results

In the observation group, 23 cases (47.92%) had mild disease, and FEV1 (94.42±8.54)% was higher than that in the control group [3 cases (18.75%), FEV1 (81.53±5.65)%]. Total IgE (1 102.9±292.5)IU/ml, IL-4 (8.86±2.02)pg/ml, IL-6(8.95±2.37)pg/ml, IL-17A(8.62±2.31)pg/ml, and IL-2R(164.64±54.16)U/ml in the observation group were lower than those in the control group total IgE (1 677.7±527.9)IU/ml, IL-4 (12.78±3.54)pg/ml, IL-6 (10.64±3.15)pg/ml, IL-17A (13.39 ± 4.45)pg/ml, IL-2R (248.54±75.39)U/ml (P<0.05). Logistic regression analysis showed that disease severity (OR=0.358, 95%CI=0.127~1.006), FEV1(OR=1.238, 95%CI=1.102~1.392), serum total IgE (OR=0.980, 95%CI: 1.102~1.392), IL-2R(OR=0.974, 95%CI: 0.954~0.994), and IL-4(OR=0.617, 95%CI: 0.402~0.947) were influencing factors for biological targeted therapy in children with BA. ROC curve analysis revealed that the area under the curve (AUC) for the combined prediction of serum total IgE, IL-4, and IL-2R for biological targeted therapy in children with BA was 0.896 (95%CI=0.906~0.999), which was higher than the AUCs for individual predictions of serum total IgE (0.683, 95%CI=0.703~0.904), IL-4 (0.654, 95%CI: 0.722~0.917), and IL-2R (0.642, 95%CI: 0.676~0.886).

Conclusion

Serum levels of IgE, IL-4, and IL-2R are negatively correlated with the efficacy of biological targeted therapy in children with BA. The combined prediction of serum IgE, IL-4, and IL-2R holds clinical significance for biological targeted therapy in children with BA.

表1 两组BA患儿临床资料结果比较(±s)
表2 BA患儿生物靶向治疗反应Logistic回归分析
表3 生物标志物预测BA患儿生物靶向治疗反应ROC曲线分析
图1 患儿典型胸部X线摄片。图A为10岁男孩重度哮喘首诊胸片;图B为8岁男孩重度哮喘首诊胸片
1
陈华萍,陈晓龙,胡明冬. 难治性哮喘的发病机制及诊治进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(1): 144-147.
2
Zhang Q, Xu F, Chen F. Construction and validation of a predictive model for allergic rhinitis complicating children with bronchial asthma[J]. Allergol Immunopathol (Madr), 2025, 53(1): 131-138.
3
Wood RA, Togias A, Sicherer SH, et al. Omalizumab for the treatment of multiple food allergies[J]. N Engl J Med, 2024, 390(10): 889-899.
4
Fu H, Gao Y. Correlation analysis of serum Rac1 level with asthma control, airway inflammatory response and lung function in asthmatic children[J]. BMC Pulm Med, 2024, 24(1): 455.
5
Wang X, Gao Y, Li L, et al. Pingchuanning decotion alleviates bronchial asthma airway inflammation through ROS/HMGB1/Beclin-1 mediated cell autophagy[J]. Altern Ther Health Med, 2024, 30(1): 270-277.
6
Nagano T. Biologics treatment for eosinophilic chronic rhinosinusitis complicated by bronchial asthma: Narrative review[J]. Respir Investig, 2025, 63(1): 35-39.
7
Cui L, Song X, Peng Y, et al. Clinical significance of combined detection of CCL22 and IL-1 as potential new bronchial inflammatory mediators in children′s asthma[J]. Immun Inflamm Dis, 2024, 12(11): e70043.
8
中华医学会儿科学分会呼吸学组,《中华儿科杂志》编辑委员会. 儿童支气管哮喘诊断与防治指南(2016年版)[J]. 中华儿科杂志2016, 54(3): 167-181.
9
中华医学会呼吸病学分会哮喘学组. 支气管哮喘控制的中国专家共识[J]. 中华内科杂志2013, 52(5): 440-443.
10
Qian K, Xu H, Chen Z, et al. Advances in pulmonary rehabilitation for children with bronchial asthma[J]. Zhejiang Da Xue Xue Bao Yi Xue Ban, 2023, 52(4): 518-525.
11
Long C, Sun C, Lin H, et al. Efficacy and safety of subcutaneous immunotherapy combined with omalizumab in children with dust mite-induced asthma[J]. J Asthma, 2024, 61(11): 1561-1570.
12
Cao W, Yu Y, Xiao Y, et al. Cost-effectiveness analysis of omalizumab combined with standard of care in treating moderate to severe asthma children in china[J]. Pediatr Pulmonol, 2025, 60(4): e71066.
13
Fang L, Shen Y, Huang T, et al. Diagnostic value of IgE, fractional of exhaled nitric oxide, and peripheral blood eosinophils in adult bronchial asthma and their relationship with disease severity[J]. Am J Transl Res, 2024, 16(12): 7521-7529.
14
Wang D, Liu C, Bao C, et al. Diagnostic accuracy of FEF25-75 for bronchial hyperresponsiveness in patients with suspected asthma and/or allergic rhinitis: A systematic review and meta-analysis[J]. Lung, 2025, 203(1): 23.
15
Rebrova S, Emelyanov A, Sergeeva G, et al. Markers of eosinophilic airway inflammation in patients with asthma and allergic rhinitis[J]. Allergy Asthma Proc, 2024, 45(1): e9-e13.
16
Rupani H, Busse WW, Howarth PH, et al. Therapeutic relevance of eosinophilic inflammation and airway viral interactions in severe asthma[J]. Allergy, 2024, 79(10): 2589-2604.
17
Zhang P, Ruan C, Yang G, et al. PGRN inhibits early B-cell activation and IgE production through the IFITM3-STAT1 signaling pathway in asthma[J]. Adv Sci (Weinh), 202411(45):e2403939.
18
Domingo C, Busse WW, Hanania NA, et al. The direct and indirect role of IgE on airway epithelium in asthma[J]. Allergy, 2025, 80(4): 919-931.
19
Rezwan T, Perez M, Jacobs S, et al. Correlation between total IgE level and asthma symptom severity in hospitalized children[J]. J Allergy Clin Immunol Glob, 2025, 4(2): 100452.
20
Shamriz O, Parnasa E, Rubin L, et al. Dual biological treatments in immune-mediated disorders: a single center experience[J]. BMC Immunol, 2025, 26(1): 29.
21
Maspero J, Adir Y, Al-Ahmad M, et al. Type 2 inflammation in asthma and other airway diseases[J]. ERJ Open Res, 2022, 8(3): 00576-2021.
22
Maurer M, Casale TB, Saini SS, et al. Dupilumab in patients with chronic spontaneous urticaria (LIBERTY-CSU CUPID): Two randomized, double-blind, placebo-controlled, phase 3 trials[J]. J Allergy Clin Immunol, 2024, 154(1): 184-194.
23
Sima Y, Zheng M, Zhao Y, et al. Predicting the effectiveness of omalizumab in patients with refractory chronic rhinosinusitis with nasal polyps comorbid with asthma based on inflammatory biomarkers[J]. World Allergy Organ J, 2025, 18(1): 101009.
24
Sapartini G, Wong G, Indrati AR, et al. The association between vitamin D, interleukin-4, and interleukin-10 levels and CD23+ expression with bronchial asthma in stunted children[J]. Biomedicines, 2023, 11(9): 2542.
25
Montorfani J, Hatterer E, Chatel L, et al. Selective activation of interleukin-2/interleukin-15 receptor signaling in tumor microenvironment using paired bispecific antibodies[J]. J Immunother Cancer, 2025, 13(3): e010650.
26
Li Y, Jiang Q, Geng X, et al. The high-affinity IL-2 receptor affects white matter damage after cerebral ischemia by regulating CD8+ T lymphocyte differentiation[J]. J Neuroimmune Pharmacol, 2025, 20(1): 8.
27
Bai L, Liu X, Yuan Z, et al. Activation of IL-2/IL-2R pathway by Hedyotis diffusa polysaccharide improves immunotherapy in colorectal cancer[J]. Int J Biol Macromol, 2025, 306(Pt 4): 141013.
28
Malik B, Bartlett NW, Upham JW, et al. Severe asthma ILC2s demonstrate enhanced proliferation that is modified by biologics[J]. Respirology, 2023, 28(8): 758-766.
29
Bick F, Brenis Gómez CM, Lammens I, et al. IL-2 family cytokines IL-9 and IL-21 differentially regulate innate and adaptive type 2 immunity in asthma[J]. J Allergy Clin Immuno, 2024, 154(5): 1129-1145.
30
Shamji MH, Boyle RJ. Biological therapy practice, biomarkers of severe asthma and novel approaches for attaining immunomodulation in upper airway disease[J]. Clin Exp Allergy, 2023, 53(2): 130-131.
[1] 周子健, 吴忠. CT在泌尿系结石诊疗中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 299-302.
[2] 郭依丹, 王军, 朱祥, 吉泽, 王蓓娟. TWEAK 在诱导痰中的表达与哮喘严重程度的关联性探讨[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 375-379.
[3] 黄波翠, 蔡思铭, 古裕鸟, 庄秀娟, 钟娇霞, 吴小文, 霍开明. 哮喘患儿IL-10 基因多态性与肺功能及外周血Treg 细胞的相关性[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 1003-1007.
[4] 王亚岚, 倪婧, 余世庆, 陶银花, 张荣. 尼达尼布抗纤维化治疗特发性肺纤维化的耐受性和疗效预测因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 750-755.
[5] 白若靖, 郭军. 维生素D对肺部疾病临床意义的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 659-662.
[6] 朱斯悦, 张晓莹, 严玉茹, 陈绯. 介入支气管镜在肺部疾病诊断和治疗中的应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(01): 148-151.
[7] 陈华萍, 陈晓龙, 胡明冬. 难治性哮喘的发病机制及诊治进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(01): 144-147.
[8] 暴静, 吴霞, 田雅萍, 尹钢. 维生素D3联合孟鲁司特钠治疗支气管哮喘对血清VEGF、TGF-β1及肺功能的影响[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(01): 63-67.
[9] 路东明, 陈建华, 艾月琴. 布地格福吸入气雾剂治疗支气管哮喘的临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(03): 361-363.
[10] 谭玲芳, 周克兵. 基于生物信息学整合鉴定与支气管哮喘相关的潜在诊断生物标志物[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(03): 329-334.
[11] 阎凯, 付雍, 章正涛, 卢文峰, 王毅州, 巫国谊, 张海斌. 中晚期肝癌疗效预测模型暨肝癌类器官模型研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 348-351.
[12] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J/OL]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[13] 侍新宇, 孙金兵, 何宋兵. 血液生物标志物在直肠癌新辅助治疗中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2023, 12(03): 228-233.
[14] 扈姝琴, 许红燕, 曹丹, 丁亚艳. 品管圈及互动式健康教育对重症支气管哮喘患儿FeNO及病情控制的影响[J/OL]. 中华卫生应急电子杂志, 2025, 11(01): 10-15.
[15] 周泽恺, 刘宝胤, 聂云韬, 孟化. 肥胖对肺功能影响的研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(01): 58-65.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?