切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2019, Vol. 12 ›› Issue (02) : 160 -165. doi: 10.3877/cma.j.issn.1674-6902.2019.02.006

所属专题: 文献

论著

芍药苷对慢性阻塞性肺疾病的疗效分析
谭丹1, 曾小琴2, 徐伟1, 周人杰1,()   
  1. 1. 400037 重庆,陆军军医大学(第三军医大学)新桥医院急诊部
    2. 400037 重庆,陆军军医大学(第三军医大学)新桥医院呼吸重症医学科
  • 收稿日期:2018-12-03 出版日期:2019-04-20
  • 通信作者: 周人杰
  • 基金资助:
    国家自然科学基金资助项目(30972964)

Protective effect of paeoniflorin on rats with chronic obstructive pulmonary disease

Dan Tan1, Xiaoqing Zeng2, Wei Xu1, Renjie Zhou1,()   

  1. 1. Emergency Department, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
    2. Respiratory and Critical Care Medicine, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
  • Received:2018-12-03 Published:2019-04-20
  • Corresponding author: Renjie Zhou
  • About author:
    Corresponding author: Zhou Renjie, Email:
引用本文:

谭丹, 曾小琴, 徐伟, 周人杰. 芍药苷对慢性阻塞性肺疾病的疗效分析[J]. 中华肺部疾病杂志(电子版), 2019, 12(02): 160-165.

Dan Tan, Xiaoqing Zeng, Wei Xu, Renjie Zhou. Protective effect of paeoniflorin on rats with chronic obstructive pulmonary disease[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2019, 12(02): 160-165.

目的

探讨芍药苷(paeoniflorin, PF)对慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD)大鼠的作用及其可能机制。

方法

将72只大鼠分6组:正常对照组,COPD组,芍药苷低、中、高剂量组,西药组。记录各组大鼠精神状态、增长体质量等;测定各组大鼠的肺顺应性(CL)、第0.3秒的用力呼气容积和(FEV 0.3%)和用力肺活量(FVC)的比值、用力呼气流量(MMEF);Western blot检测肺组织TLR2、NF-κB;ELISA法检测血清、肺泡灌洗液和肺组织中IL-1、IL-6、IL-8、IL-1β、TNF-α的表达。

结果

芍药苷可改善COPD大鼠精神萎靡、饮食量减少等情况;COPD大鼠体质量增长43.22±5.35明显欠佳,芍药苷可改善COPD大鼠体质量增长欠佳的情况,其中以芍药苷高剂量组体质量增长最为明显68.11±6.72(P<0.05);COPD大鼠CL、FEV 0.3%/FVC、用力呼MMEF均明显下降,芍药苷可升高这3项指标(P<0.05),其中以芍药苷高剂量组改善最为明显,分别为0.38±0.11、0.77±0.11、3.98±0.38(P<0.05);COPD大鼠TLR2、NF-κB、IL-1、IL-6、IL-8、IL-1β、TNF-α均升高,芍药苷可降低这几项指标,其中以芍药苷高剂量组降低最为明显,分别为1.28±0.11、1.21±0.13、135±22、290±32、290±17、180±39、590±23(P<0.05)。

结论

芍药苷可抑制COPD大鼠炎症细胞因子的表达,从而改善COPD大鼠的一般情况,这可能是通过调节TLR2/NF-κB信号传导通路引起的。

Objective

To investigate the effect of paeoniflorin (PF) on chronic obstructive pulmonary disease in rats and its possible mechanism.

Methods

A total of 72 rats were randomly divided into 6 groups (n=12 each): the normal control group (group A), the COPD model group (group B), the groups of low, medium and high doses of paeoniflorin (group C, group D, and group E, respectively), and the Western medicine group (group F). Before the rats were sacrificed, the general conditions of the rats in each group were observed and the weight gains were calculated. The lung functions of the rats were measured, and the bronchoalveolar lavage fluid (BALF) was collected. After the rats were sacrificed, their lungs and serum were collected. The expression levels of toll-like receptor2 (TLR2) and nuclear factor-κB (NF-κB) in the lung tissues were detected by Western blotting. The expression levels of interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8) and other inflammatory cytokines in the serum, BALF and lung tissues were detected by enzyme linked immunosorbent assay (ELISA).

Results

Paeoniflorin can improve the general conditions of hair dryness, poor activity, mental wilting, reduced diet, and frequent cough in the COPD rats. In the normal control group, the body mass growth was better (82.11±8.47), and it was significantly worse in the COPD rats (43.22±5.35). Paeoniflorin could improve the poor growth of the COPD rats. The most significant mass growth was found in the group with the highest dose of paeoniflorin (68.11±6.72, P<0.05). The lung functions of the COPD rats decreased, for example, the lung compliance (CL), the ratio of the forced expiratory volume at 0.3 seconds (FEV 0.3%) to the forced vital capacity (FVC), and the mean maximum expiratory flow (MMEF) were significantly decreased, and paeoniflorin increased these three indicators (P<0.05). Among which, the most obvious effect occurred in the group with the highest dose of paeoniflorin, with the CL, the ratio of FEV 0.3% to FVC, and the MMEF of 0.38±0.11, 0.77±0.11, and 3.98±0.38, respectively (P<0.05). The expression levels of TLR2, NF-κB, IL-1, IL-6, IL-8, IL-1βand TNF-α were elevated in the COPD rats, and paeoniflorin could reduce these indicators. Among which, the most significant effect was found in the group with the highest dose of paeoniflorin, with the reduced expression levels of TLR2, NF-κB, IL-1, IL-6, IL-8, IL-1βand TNF-α of 1.28±0.11, 1.21±0.13, 135±22, 290±32, 290±17, 180±39, and 590±23, respectively (P<0.05).

Conclusion

Paeoniflorin may regulate the pathway of TLR2/NF-κB, thereby inhibiting the release of downstream inflammatory factors in the COPD rats, which may provide a new idea for the treatment of COPD.

表1 各组大鼠体质量增长情况(±s)
表2 各组大鼠肺功能情况(±s)
图1 各组大鼠TLR2和NF-κB表达的wb图
表3 各组大鼠肺组织TLR2、NF-κB蛋白表达情况(±s)
表4 各组大鼠血清中炎症细胞因子表达情况(±s)
表5 各组大鼠BALF中炎症细胞因子表达情况(±s)
表6 各组大鼠肺组织中炎症细胞因子表达情况(±s)
1
任成山,钱桂生. 慢性阻塞性肺疾病发病机制研究现状与展望[J/CD]. 中华肺部疾病杂志(电子版), 2009, 2(2):104-115.
2
GOLD Executive Committee. Global strategy for the diagnosis, management,and prevention of chronic obstructive pulmonary[J]. Disease (Revised 2013).

URL    
3
Mannino DM, Buist AS. Global burden of COPD: risk factors, prevalence,and future trends[J].The Lancet, 2016, 370(9589):765-773.
4
Mannino DM, Higuchi K, Yu TC, et al. Economic Burden of COPD in The Presence of Comorbidities[J]. Chest, 2016, 148(1):138-150.
5
Hanania NA, Marciniuk DD. A unified front against COPD:clinical Practice guidelines from the American College of Physicians, the American College of Chest Physicians, the American Thoracic Society, and the European Respiratory Society[J].Chest, 2016, 140:565-566.
6
Decramer M, Janssens W, Miravitlles M. Chronic obstructive Pulmonary disease[J]. Lancet, 2016, 379(9823):1341-1351.
7
Zaher C, Halbert R, Dubois R, et al. Smoking-related diseases: the Importance of COPD[J]. Int J Tuberc Lung Dis, 2004, 8(12):1423-1428.
8
Zhu YG, Qu JM. Toll like receptors and inflammatory factors in Sepsis and differential expression related to age[J]. Chin Med J, 2011, 120(1):56-61.
9
Ferrero RL. Innate immune recognition of the extracellular mucosal pathogen, Helicobacter pylori[J]. Molecular Immunology, 2016, 42(8):879-885.
10
Yamamoto M, Akira S. Mechanisms of innate immune responses mediated by Toll-like receptors[J]. Clinical Applied Immunol Rev, 2016, 5(3):167-183.
11
罗维丹,袁巫达. 白芍总苷联合消银颗粒治疗糖皮质激素依赖性皮炎45例[J]. 浙江中医杂志,2015, 45(3):25-29.
12
刘家齐,赵正晓,魏颖,等. 芍药苷对哮喘模型小鼠气道炎症趋化因子及受体的干预作用[J]. 中国实验动物学报,2016, 24(5):460-464.
13
文秀华,王飞,苏凯. 补肺汤通过调控TLR2/NF-κB信号转导通路改善慢性阻塞性肺疾病气道重塑机制研究[J]. 河南中医,2018, 38(6):838-842.
14
Xie DQ, Sun GY, Zhang XG, et al. Osthole Preconditioning protects rats against renal ischemia-reperfusion Injury[J]. Transplant Proc, 2016, 47:1620-1626.
15
黄晓婷. 中医护理在COPD稳定期患者肺功能及生活质量中的运用效果[J]. 包头医学院学报,2016, 32(7):119-120.
16
郅扶旻,徐洪涛,彭先祝. 益气补肾活血方对COPD稳定期患者肺功能及1L-6、1L-13、TNF-α的影响[J]. 中医药学报,2016, 44(2):82-84.
17
Brusselle GG, Joos GF, Bracke KR. New insights into the immunology of chronic obstructive pulmonary disease[J]. Lancet, 2011, 378(9795):1015-1026.
18
田春燕,张继红,李伟国,等. 细胞因子与COPD炎症机制研究进展[J]. 临床肺科杂志,2015, 16(2):248-249.
19
刘丹丹,曹纲,张琦,等. 三叶青黄酮经p38MAPK和NF-κB途径抑制老年小鼠急性肺损伤[J]. 中国药理学通报,2016, 31(12):1725-1730.
20
陈丽,刘升明. 慢性阻塞性肺疾病的气道炎症及治疗新进展[J]. 实用医学杂志,2015, 24(24):4170-4171.
21
祁海燕,封继宏,李美凤,等. 畅肺宁颗粒对COPD急性期大鼠的肺组织病理和血清中TNF-α、MIP-2水平的影响[J]. 陕西中医,2016, 37(8):1094-1097.
22
颜碧清,楼天正,徐俊龙,等. COPD患者急性发作期血清TNF-α、IL-6、IL-8变化及意义[J]. 浙江中西医结合杂志,2016, 14(6):343-344.
23
Pauwels NS, Bracke KR, Dupont LL, et al. Role of IL-1αand the Nlrp3/caspase-1/IL-1βin cigarette smoke-induced Pulmonary inflammation and COPD[J]. Eur Respir J, 2011, 38(5):1019-1028.
24
Hammad DR, Elgazzar AG, Essawy TS, et al. Evaluation of serum interleukin-1beta as an inflammatory marker in COPD patients[J]. Egyptian Journal of Chest Diseases And Tuberculosis, 2015, 64(2):347-352.
25
刘丽燕,倪秀雄. TLRs/MyD88信号转导通路与树突状细胞的研究进展[J]. 海峡药学,2009, 21(10):1-4.
26
杨勤军,李泽庚,张星星,等. 中医药治疗慢性阻塞性肺疾病稳定期研究进展[J]. 江西中医药大学学报,2018, 30(5):113-124.
[1] 马锦芳, 何正光, 郑劲平. 盐酸氨溴索雾化吸入治疗慢性阻塞性肺疾病黏痰症患者的疗效和安全性分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 568-574.
[2] 程炜炜, 张青, 张诚实, 冯契靓, 陈荣荣, 赵云峰. 全身免疫炎症指数与慢性阻塞性肺疾病急性加重期病情严重程度相关性分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 580-584.
[3] 杨万荣, 任治坤, 时新颍. 沙丁胺醇雾化吸入脾多肽治疗AECOPD的疗效分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 609-612.
[4] 赖乾德, 吕相琴, 蔺洋, 刘媛梅, 赵春艳, 李琦. 肝素结合蛋白对慢性阻塞性肺疾病预后预测分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 613-616.
[5] 王微, 丁霖, 陈茜, 呼延欣, 闫蓓. 综合治疗对慢性阻塞性肺疾病的疗效及转归影响分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 621-624.
[6] 方晓玉, 王婷, 赵珊, 陈锋. HALP指数对AECOPD并发呼吸衰竭患者ICU结局的预测意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 639-641.
[7] 郭少琳, 郭建英, 左秀萍, 高苗. 慢性阻塞性肺疾病康复训练依从性影响因素分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 652-654.
[8] 白若靖, 郭军. 维生素D对肺部疾病临床意义的研究进展[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 659-662.
[9] 孔令梅, 徐晓媛, 马丽颖. 慢性阻塞性肺疾病认知衰弱危险因素及预后分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 407-410.
[10] 徐艳, 江秀娟, 王超, 江圆满. 股直肌剪切波弹性成像对COPD并发肌少症的诊断意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 454-457.
[11] 黄映兰, 骆丽萍, 郭慧玲, 袁麟标. 慢性阻塞性肺疾病糖皮质激素治疗反应性的影响因素分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 469-471.
[12] 杨坤, 赵景成, 吴永强. 无创呼吸机在慢性阻塞性肺疾病并发呼吸衰竭救治的临床分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 481-483.
[13] 宋素莉, 贺英华, 陈丽娟. COPD并发吸入性CAP危险因素及病原菌分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 264-267.
[14] 陈婷婷, 李春娟. 经鼻高流量湿化氧疗治疗AECOPD伴Ⅱ型呼吸衰竭的临床分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 276-279.
[15] 周文欢, 杨黎. AECOPD低钠血症发生风险及预测因素分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 313-315.
阅读次数
全文


摘要