切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2019, Vol. 12 ›› Issue (02) : 160 -165. doi: 10.3877/cma.j.issn.1674-6902.2019.02.006

所属专题: 文献

论著

芍药苷对慢性阻塞性肺疾病的疗效分析
谭丹1, 曾小琴2, 徐伟1, 周人杰1,()   
  1. 1. 400037 重庆,陆军军医大学(第三军医大学)新桥医院急诊部
    2. 400037 重庆,陆军军医大学(第三军医大学)新桥医院呼吸重症医学科
  • 收稿日期:2018-12-03 出版日期:2019-04-20
  • 通信作者: 周人杰
  • 基金资助:
    国家自然科学基金资助项目(30972964)

Protective effect of paeoniflorin on rats with chronic obstructive pulmonary disease

Dan Tan1, Xiaoqing Zeng2, Wei Xu1, Renjie Zhou1,()   

  1. 1. Emergency Department, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
    2. Respiratory and Critical Care Medicine, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
  • Received:2018-12-03 Published:2019-04-20
  • Corresponding author: Renjie Zhou
  • About author:
    Corresponding author: Zhou Renjie, Email:
引用本文:

谭丹, 曾小琴, 徐伟, 周人杰. 芍药苷对慢性阻塞性肺疾病的疗效分析[J]. 中华肺部疾病杂志(电子版), 2019, 12(02): 160-165.

Dan Tan, Xiaoqing Zeng, Wei Xu, Renjie Zhou. Protective effect of paeoniflorin on rats with chronic obstructive pulmonary disease[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2019, 12(02): 160-165.

目的

探讨芍药苷(paeoniflorin, PF)对慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD)大鼠的作用及其可能机制。

方法

将72只大鼠分6组:正常对照组,COPD组,芍药苷低、中、高剂量组,西药组。记录各组大鼠精神状态、增长体质量等;测定各组大鼠的肺顺应性(CL)、第0.3秒的用力呼气容积和(FEV 0.3%)和用力肺活量(FVC)的比值、用力呼气流量(MMEF);Western blot检测肺组织TLR2、NF-κB;ELISA法检测血清、肺泡灌洗液和肺组织中IL-1、IL-6、IL-8、IL-1β、TNF-α的表达。

结果

芍药苷可改善COPD大鼠精神萎靡、饮食量减少等情况;COPD大鼠体质量增长43.22±5.35明显欠佳,芍药苷可改善COPD大鼠体质量增长欠佳的情况,其中以芍药苷高剂量组体质量增长最为明显68.11±6.72(P<0.05);COPD大鼠CL、FEV 0.3%/FVC、用力呼MMEF均明显下降,芍药苷可升高这3项指标(P<0.05),其中以芍药苷高剂量组改善最为明显,分别为0.38±0.11、0.77±0.11、3.98±0.38(P<0.05);COPD大鼠TLR2、NF-κB、IL-1、IL-6、IL-8、IL-1β、TNF-α均升高,芍药苷可降低这几项指标,其中以芍药苷高剂量组降低最为明显,分别为1.28±0.11、1.21±0.13、135±22、290±32、290±17、180±39、590±23(P<0.05)。

结论

芍药苷可抑制COPD大鼠炎症细胞因子的表达,从而改善COPD大鼠的一般情况,这可能是通过调节TLR2/NF-κB信号传导通路引起的。

Objective

To investigate the effect of paeoniflorin (PF) on chronic obstructive pulmonary disease in rats and its possible mechanism.

Methods

A total of 72 rats were randomly divided into 6 groups (n=12 each): the normal control group (group A), the COPD model group (group B), the groups of low, medium and high doses of paeoniflorin (group C, group D, and group E, respectively), and the Western medicine group (group F). Before the rats were sacrificed, the general conditions of the rats in each group were observed and the weight gains were calculated. The lung functions of the rats were measured, and the bronchoalveolar lavage fluid (BALF) was collected. After the rats were sacrificed, their lungs and serum were collected. The expression levels of toll-like receptor2 (TLR2) and nuclear factor-κB (NF-κB) in the lung tissues were detected by Western blotting. The expression levels of interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8) and other inflammatory cytokines in the serum, BALF and lung tissues were detected by enzyme linked immunosorbent assay (ELISA).

Results

Paeoniflorin can improve the general conditions of hair dryness, poor activity, mental wilting, reduced diet, and frequent cough in the COPD rats. In the normal control group, the body mass growth was better (82.11±8.47), and it was significantly worse in the COPD rats (43.22±5.35). Paeoniflorin could improve the poor growth of the COPD rats. The most significant mass growth was found in the group with the highest dose of paeoniflorin (68.11±6.72, P<0.05). The lung functions of the COPD rats decreased, for example, the lung compliance (CL), the ratio of the forced expiratory volume at 0.3 seconds (FEV 0.3%) to the forced vital capacity (FVC), and the mean maximum expiratory flow (MMEF) were significantly decreased, and paeoniflorin increased these three indicators (P<0.05). Among which, the most obvious effect occurred in the group with the highest dose of paeoniflorin, with the CL, the ratio of FEV 0.3% to FVC, and the MMEF of 0.38±0.11, 0.77±0.11, and 3.98±0.38, respectively (P<0.05). The expression levels of TLR2, NF-κB, IL-1, IL-6, IL-8, IL-1βand TNF-α were elevated in the COPD rats, and paeoniflorin could reduce these indicators. Among which, the most significant effect was found in the group with the highest dose of paeoniflorin, with the reduced expression levels of TLR2, NF-κB, IL-1, IL-6, IL-8, IL-1βand TNF-α of 1.28±0.11, 1.21±0.13, 135±22, 290±32, 290±17, 180±39, and 590±23, respectively (P<0.05).

Conclusion

Paeoniflorin may regulate the pathway of TLR2/NF-κB, thereby inhibiting the release of downstream inflammatory factors in the COPD rats, which may provide a new idea for the treatment of COPD.

表1 各组大鼠体质量增长情况(±s)
表2 各组大鼠肺功能情况(±s)
图1 各组大鼠TLR2和NF-κB表达的wb图
表3 各组大鼠肺组织TLR2、NF-κB蛋白表达情况(±s)
表4 各组大鼠血清中炎症细胞因子表达情况(±s)
表5 各组大鼠BALF中炎症细胞因子表达情况(±s)
表6 各组大鼠肺组织中炎症细胞因子表达情况(±s)
1
任成山,钱桂生. 慢性阻塞性肺疾病发病机制研究现状与展望[J/CD]. 中华肺部疾病杂志(电子版), 2009, 2(2):104-115.
2
GOLD Executive Committee. Global strategy for the diagnosis, management,and prevention of chronic obstructive pulmonary[J]. Disease (Revised 2013).

URL    
3
Mannino DM, Buist AS. Global burden of COPD: risk factors, prevalence,and future trends[J].The Lancet, 2016, 370(9589):765-773.
4
Mannino DM, Higuchi K, Yu TC, et al. Economic Burden of COPD in The Presence of Comorbidities[J]. Chest, 2016, 148(1):138-150.
5
Hanania NA, Marciniuk DD. A unified front against COPD:clinical Practice guidelines from the American College of Physicians, the American College of Chest Physicians, the American Thoracic Society, and the European Respiratory Society[J].Chest, 2016, 140:565-566.
6
Decramer M, Janssens W, Miravitlles M. Chronic obstructive Pulmonary disease[J]. Lancet, 2016, 379(9823):1341-1351.
7
Zaher C, Halbert R, Dubois R, et al. Smoking-related diseases: the Importance of COPD[J]. Int J Tuberc Lung Dis, 2004, 8(12):1423-1428.
8
Zhu YG, Qu JM. Toll like receptors and inflammatory factors in Sepsis and differential expression related to age[J]. Chin Med J, 2011, 120(1):56-61.
9
Ferrero RL. Innate immune recognition of the extracellular mucosal pathogen, Helicobacter pylori[J]. Molecular Immunology, 2016, 42(8):879-885.
10
Yamamoto M, Akira S. Mechanisms of innate immune responses mediated by Toll-like receptors[J]. Clinical Applied Immunol Rev, 2016, 5(3):167-183.
11
罗维丹,袁巫达. 白芍总苷联合消银颗粒治疗糖皮质激素依赖性皮炎45例[J]. 浙江中医杂志,2015, 45(3):25-29.
12
刘家齐,赵正晓,魏颖,等. 芍药苷对哮喘模型小鼠气道炎症趋化因子及受体的干预作用[J]. 中国实验动物学报,2016, 24(5):460-464.
13
文秀华,王飞,苏凯. 补肺汤通过调控TLR2/NF-κB信号转导通路改善慢性阻塞性肺疾病气道重塑机制研究[J]. 河南中医,2018, 38(6):838-842.
14
Xie DQ, Sun GY, Zhang XG, et al. Osthole Preconditioning protects rats against renal ischemia-reperfusion Injury[J]. Transplant Proc, 2016, 47:1620-1626.
15
黄晓婷. 中医护理在COPD稳定期患者肺功能及生活质量中的运用效果[J]. 包头医学院学报,2016, 32(7):119-120.
16
郅扶旻,徐洪涛,彭先祝. 益气补肾活血方对COPD稳定期患者肺功能及1L-6、1L-13、TNF-α的影响[J]. 中医药学报,2016, 44(2):82-84.
17
Brusselle GG, Joos GF, Bracke KR. New insights into the immunology of chronic obstructive pulmonary disease[J]. Lancet, 2011, 378(9795):1015-1026.
18
田春燕,张继红,李伟国,等. 细胞因子与COPD炎症机制研究进展[J]. 临床肺科杂志,2015, 16(2):248-249.
19
刘丹丹,曹纲,张琦,等. 三叶青黄酮经p38MAPK和NF-κB途径抑制老年小鼠急性肺损伤[J]. 中国药理学通报,2016, 31(12):1725-1730.
20
陈丽,刘升明. 慢性阻塞性肺疾病的气道炎症及治疗新进展[J]. 实用医学杂志,2015, 24(24):4170-4171.
21
祁海燕,封继宏,李美凤,等. 畅肺宁颗粒对COPD急性期大鼠的肺组织病理和血清中TNF-α、MIP-2水平的影响[J]. 陕西中医,2016, 37(8):1094-1097.
22
颜碧清,楼天正,徐俊龙,等. COPD患者急性发作期血清TNF-α、IL-6、IL-8变化及意义[J]. 浙江中西医结合杂志,2016, 14(6):343-344.
23
Pauwels NS, Bracke KR, Dupont LL, et al. Role of IL-1αand the Nlrp3/caspase-1/IL-1βin cigarette smoke-induced Pulmonary inflammation and COPD[J]. Eur Respir J, 2011, 38(5):1019-1028.
24
Hammad DR, Elgazzar AG, Essawy TS, et al. Evaluation of serum interleukin-1beta as an inflammatory marker in COPD patients[J]. Egyptian Journal of Chest Diseases And Tuberculosis, 2015, 64(2):347-352.
25
刘丽燕,倪秀雄. TLRs/MyD88信号转导通路与树突状细胞的研究进展[J]. 海峡药学,2009, 21(10):1-4.
26
杨勤军,李泽庚,张星星,等. 中医药治疗慢性阻塞性肺疾病稳定期研究进展[J]. 江西中医药大学学报,2018, 30(5):113-124.
[1] 周杉京, 诸葛金科, 王芳芳. 补肺活血胶囊对COPD患者cCor、ALD、Ang-Ⅱ的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 517-519.
[2] 吴庆华, 冒勇, 闫效坤. AECOPD并发AKI的危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 529-531.
[3] 芦丹, 杨硕, 刘旭. VEGF、HMGB1、hs-CRP/Alb在AECOPD伴呼吸衰竭中的变化及预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 532-534.
[4] 熊锋, 娄建丽. 慢性阻塞性肺疾病急性加重期预后的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 550-553.
[5] 王庆, 张红联, 吴志勇. COPD合并多重耐药菌肺部感染预后危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 557-559.
[6] 林静, 陈芳, 刘小霞. COPD患者认知功能障碍影响因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 569-571.
[7] 张七妹, 麦宜准, 蒋浩波. 喘可治对慢性阻塞性肺疾病缓解期的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 578-580.
[8] 张林, 刘芳, 赵静, 刘勇, 周青. 远程康复在慢性阻塞性肺疾病患者肺康复中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 601-604.
[9] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[10] 徐丽玲, 卢玉宝, 赵彦, 任利, 李姝艺, 符娟, 康玲, 汪青松, 尤再春. COPD管理云平台的构建及临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 481-484.
[11] 李海明, 刘鸿飞, 李俊. 血清脂蛋白酶水平与COPD患者骨骼肌质量减少的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 500-503.
[12] 苏国栋, 王剑桥, 刘洋, 樊祥德, 樊华, 刘惠林. 吸气肌训练对COPD运动恐动症的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 421-423.
[13] 赵晓红, 修翠萍, 张瑜, 吴珂. 大康复理念在COPD稳定期肺康复治疗的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 424-426.
[14] 罗静, 王霞, 高上兰, 张彬霞, 廖菲. 5A+5R式管理干预在慢性阻塞性肺疾病患者肺康复中的应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 429-431.
[15] 廖玥, 王可, 秦江月, 吴艳秋, 陈俊, 汪涛, 文富强, 王浩. 丹龙口服液治疗轻中度慢性阻塞性肺疾病急性加重期的多中心及前瞻性研究[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 306-311.
阅读次数
全文


摘要