切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2025, Vol. 18 ›› Issue (04) : 580 -585. doi: 10.3877/cma.j.issn.1674-6902.2025.04.015

论著

RB1基因状态对非小细胞肺癌免疫检查点抑制剂联合化疗反应的意义
刘学飞, 赵东, 李婷婷, 李佳浓, 葛亚楠, 李博()   
  1. 110000 沈阳,中国人民解放军北部战区总医院肿瘤科
  • 收稿日期:2025-04-22 出版日期:2025-08-25
  • 通信作者: 李博
  • 基金资助:
    辽宁省科技计划联合计划(2023JH2/101700095)

Clinical significance of RB1 gene status predicting the response to immune checkpoint inhibitor combined with chemotherapy in patients with non-small cell lung cancer

Xuefei Liu, Dong Zhao, Tingting Li, Jianong Li, Yanan Ge, Bo Li()   

  1. Department of Oncology, PLA Northern Theater General Hospital, Shenyang 110000, China
  • Received:2025-04-22 Published:2025-08-25
  • Corresponding author: Bo Li
引用本文:

刘学飞, 赵东, 李婷婷, 李佳浓, 葛亚楠, 李博. RB1基因状态对非小细胞肺癌免疫检查点抑制剂联合化疗反应的意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 580-585.

Xuefei Liu, Dong Zhao, Tingting Li, Jianong Li, Yanan Ge, Bo Li. Clinical significance of RB1 gene status predicting the response to immune checkpoint inhibitor combined with chemotherapy in patients with non-small cell lung cancer[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2025, 18(04): 580-585.

目的

分析晚期非小细胞肺癌(non-small cell lung cancer, NSCLC)患者潜在基因组特征因素预测免疫检查点抑制剂(immune checkpoint inhibitors, ICIs)联合化疗反应的临床意义。

方法

选择2021年1月至2023年2月我院收治的基线无EGFR/ALK/ROS1突变且至少接受2个周期ICIs+化疗的晚期NSCLC患者52例,收集治疗前血浆样本,完成DNA提取和基于循环肿瘤DNA(circulating tumor DNA, ctDNA)靶向测序。抗PD-L1抗体治疗后,将治疗有反应26例分为观察组,治疗无反应26例分为对照组。随访记录患者客观缓解率(objective response rate, ORR)和无进展生存期(progression free survival, PFS)。

结果

ICIs联合化疗方案ORR为50.0%,部分缓解(partial response, PR)26例,疾病稳定(stable disease, SD) 15例,11例疾病进展(disease progression, PD),52例中位PFS为6.27(IQR:3.05~9.40)个月。随访期间生存33例(63.46%),死亡19例(36.54%),死因为PD。年龄(P=0.021)、吸烟史(P=0.013)、一线治疗(P=0.020)与治疗反应有关。多器官转移(HR=2.73,95%CI:1.30~5.76,P=0.002)、ICIs后线治疗(HR=0.32,95%CI:0.15~0.67,P=0.002)是影响PFS因素,基线ctDNA状态、肿瘤突变负荷(tumor mutational burden, TMB)、最大体细胞等位基因频率无相关性(P>0.05)。但是,通过单变量和多变量分析,发现RB1突变(OR=7.15,P=0.031)与ICIs联合化疗反应不良相关。RB1突变(vs.野生型:log rank=4.131,P=0.042)与PFS短相关。多变量COX分析显示,RB1突变与PFS差相关(HR=1.95,P=0.011),与PD-L1表达状态、TMB、肿瘤大小和C反应蛋白水平无关。TCGA预后数据证实,与接受PD-L1联合治疗患者相比,RB1突变NSCLC患者预后差(P=0.012)。

结论

ctDNA-RB1突变与晚期NSCLC患者ICIs联合化疗PFS差有关,ctDNA-RB1突变状态可为预测PFS的标志物。

Objective

To analyze the clinical significance of potential genomic characteristic factors in predicting the response to immune checkpoint inhibitors (ICIs) combined with chemotherapy in patients with advanced non-small cell lung cancer (NSCLC).

Methods

A total of 52 patients with advanced NSCLC without baseline EGFR/ALK/ROS1 mutations, who received at least two cycles of ICIs and chemotherapy were enrolled in our hospital from January 2021 to February 2023. Pre-treatment plasma samples were collected for DNA extraction and circulating tumor DNA (ctDNA)-based targeted sequencing. After the first anti-PD-L1 antibody treatment, the responders 26 cases were divided into an observation group and non responders 26 cases in a control group. Patient objective response rate (ORR) and progression-free survival (PFS) were recorded during follow-up.

Results

The ORR for ICIs combined with chemotherapy was 50.0%, 26 cases of partial response (PR), 15 cases of stable disease (SD), 11 cases of disease progression (PD). The median PFS for all 52 patients was 6.27 months (IQR: 3.05~9.40). During the follow-up period, 33 cases survived (63.46%)and 19 cases died(36.54%). The cause of death was PD. Age (P=0.021), smoking history (P=0.013), and first-line treatment (P=0.020) were associated with treatment response. Multi-organ metastasis (HR=2.73, 95%CI: 1.30~5.76, P=0.002) and later-line ICIs treatment (HR=0.32, 95%CI=0.15~0.67, P=0.002) were factors affecting PFS. Baseline ctDNA status, tumor mutational burden (TMB), and maximum somatic allele frequency showed no correlation (P>0.05). However, univariate and multivariate analyses revealed that RB1 mutation (OR=7.15, P=0.031) was associated with a poor response to ICIs combined with chemotherapy. RB1 mutation (vs. wild-type: log-rank=4.131, P=0.042) was associated with shorter PFS. Multivariate COX analysis showed that RB1 mutation was associated with worse PFS (HR=1.95, P=0.011), independent of PD-L1 expression status, TMB, tumor size, and C-reactive protein levels. TCGA prognostic data confirmed that NSCLC patients with RB1 mutations had a worse prognosis compared to those receiving PD-L1 combination therapy (P=0.012).

Conclusion

ctDNA-RB1 mutation is associated with poor PFS in advanced NSCLC patients treated with ICIs combined with chemotherapy. The ctDNA-RB1 mutation status may serve as a biomarker for predicting PFS.

表1 两组NSCLC患者临床资料比较
表2 影响NSCLC患者PFS的COX分析
表3 Logistic回归分析基线时ctDNA突变与ICIs联合化疗反应关系
图1 RB1突变分别与PD-L1、基线肿瘤大小、CRP水平和TMB相关注:PD-L1为程序性死亡配体1;CRP为C反应蛋白;TMB为肿瘤突变负荷
1
张辰阳,徐美玲,陈荣铮,等. 非小细胞肺癌免疫检查点抑制剂再挑战治疗的临床研究现状[J]. 肿瘤2024, 44(4): 404-411.
2
Zeng Y, Hu CH, Li YZ, et al. Association between pretreatment emotional distress and immune checkpoint inhibitor response in non-small-cell lung cancer[J]. Nat Med, 2024, 30(6): 1680-1688.
3
万宁,王冰,郭娅,等. 帕博利珠单抗治疗晚期非小细胞肺癌安全性和有效性的真实世界研究[J]. 中国肺癌杂志2024, 27(10): 745-753.
4
Zhao Y, He Y, Wang W, et al. Efficacy and safety of immune checkpoint inhibitors for individuals with advanced EGFR-mutated non-small-cell lung cancer who progressed on EGFR tyrosine-kinase inhibitors: a systematic review, meta-analysis, and network meta-analysis[J]. Lancet Oncol, 2024, 25(10): 1347-1356.
5
Jiang T, Wang P, Zhang J, et al. Toripalimab plus chemotherapy as second-line treatment in previously EGFR-TKI treated patients with EGFR-mutant-advanced NSCLC: a multicenter phase-Ⅱ trial[J]. Signal Transduct Target Ther, 2021, 6(1): 355.
6
Hwang M, Canzoniero JV, Rosner S, et al. Peripheral blood immune cell dynamics reflect antitumor immune responses and predict clinical response to immunotherapy[J]. J Immunother Cancer, 2022, 10(6): e004688.
7
郑清月,闫春良,赵秋红,等. 血清离子对免疫检查点抑制剂治疗非小细胞肺癌疗效影响分析[J]. 中华肿瘤防治杂志2024, 31(17): 1067-1072.
8
丁宁,徐晓波,周洁白,等. 不同二代ALK-TKIs二线治疗ALK阳性晚期非小细胞肺癌的耐药基因变异分子图谱差异[J]. 陆军军医大学学报2022, 44(24): 2493-2499.
9
江月滨,洪少君,吴苑,等. 运用二代测序技术检测非小细胞肺癌基因突变类型及分布分析[J]. 诊断病理学杂志2024, 31(10): 971-975.
10
Travis WD, Eisele M, Nishimura KK, et al. The international association for the study of lung cancer (IASLC) staging project for lung cancer: recommendation to introduce spread through air spaces as a histologic descriptor in the ninth edition of the TNM classification of lung cancer. analysis of 4061 pathologic stage I NSCLC[J]. J Thorac Oncol, 2024, 19(7): 1028-1051.
11
Duffy MJ. Circulating tumor DNA (ctDNA) as a biomarker for lung cancer: Early detection, monitoring and therapy prediction[J]. Tumour Biol, 2024, 46(s1): S283-S295.
12
Kim ES, Velcheti V, Mekhail T, et al. Blood-based tumor mutational burden as a biomarker for atezolizumab in non-small cell lung cancer: the phase 2 B-F1RST trial[J]. Nat Med, 2022, 28(5): 939-945.
13
De Marchi P, Leal LF, Duval da Silva V, et al. PD-L1 expression by tumor proportion score (TPS) and combined positive score (CPS) are similar in non-small cell lung cancer (NSCLC)[J]. J Clin Pathol, 2021, 74(11): 735-740.
14
Wyatt AW, Litiere S, Bidard FC, et al. Plasma ctDNA as a treatment response biomarker in metastatic cancers: Evaluation by the RECIST working group[J]. Clin Cancer Res, 2024, 30(22): 5034-5041.
15
Garassino MC, Gadgeel S, Speranza G, et al. Pembrolizumab plus pemetrexed and platinum in nonsquamous non-small-cell lung cancer: 5-year outcomes from the phase 3 KEYNOTE-189 study[J]. J Clin Oncol, 2023, 41(11): 1992-1998.
16
Nogami N, Barlesi F, Socinski MA, et al. IMpower 150 final exploratory analyses for atezolizumab plus bevacizumab and chemotherapy in key NSCLC patient subgroups with EGFR mutations or metastases in the liver or brain[J]. J Thorac Oncol, 2022, 17(2): 309-323.
17
Socinski MA, Jotte RM, Cappuzzo F, et al. Association of immune-related adverse events with efficacy of atezolizumab in patients with non-small cell lung cancer: Pooled analyses of the phase 3 IMpower130, IMpower132, and IMpower150 randomized clinical trials[J]. JAMA Oncol, 2023, 9(4): 527-535.
18
温照伟,孙慧颖,张志华,等. 高基线肿瘤负荷相关的巨噬细胞通过IGFBP2-STAT3-PD-L1通路促进免疫抑制微环境的形成从而降低免疫检查点抑制剂的疗效[J]. 癌症2023, 42(8): 409-428.
19
宋春莲,杨立伟,马维艳. 血清CXCL12水平预测非小细胞肺癌免疫检查点抑制剂治疗反应的临床意义[J]. 临床肿瘤学杂志2024, 29(10): 968-972.
20
石明伟,王俊康,王静. 系统免疫炎症营养指数对接受免疫检查点抑制剂治疗的非小细胞肺癌患者临床疗效及预后的评估价值研究[J]. 解放军医学院学报2023, 44(12): 1372-1378,1383.
21
Passaro A, Brahmer J, Antonia S, et al. Managing resistance to immune checkpoint inhibitors in lung cancer: Treatment and novel strategies[J]. J Clin Oncol, 2022, 40(6): 598-610.
22
Yan J, Xie Y, Liu Z, et al. DLL4-targeted CAR-T therapy sensitizes neoadjuvant chemotherapy via eliminating cancer stem cells and reshaping immune microenvironment in HER2(+) breast cancer[J]. J Immunother Cancer, 2024, 12(11): e009636.
23
Murayama T, Mahadevan NR, Meador CB, et al. Targeting TREX1 induces innate immune response in drug-resistant small-cell lung cancer[J]. Cancer Res Commun, 2024, 4(9): 2399-2414.
24
Liu N, Wu TJ, Ma YX, et al. Identification and validation of RB1 as an immune-related prognostic signature based on tumor mutation burdens in bladder cancer[J]. Anticancer Drugs, 2022, 34(2): 269-280.
25
Cordier F, Creytens D. RB1: governor of the cell cycle in health and disease-a primer for the practising pathologist[J]. J Clin Pathol, 2024, 77(7): 435-438.
26
Li N, Zhang E, Li Z, et al. The P53-P21-RB1 pathway promotes BRD4 degradation in liver cancer through USP1[J]. J Biol Chem, 2024, 300(3): 105707.
27
Husain H, Pavlick DC, Fendler BJ, et al. Tumor fraction correlates with detection of actionable variants across >23,000 circulating tumor DNA samples[J]. JCO Precis Oncol, 2022, 6: e2200261.
28
Dvorkin S, Cambier S, Volkman HE, et al. New frontiers in the cGAS-STING intracellular DNA-sensing pathway[J]. Immunity, 2024, 57(4): 718-730.
29
Ghosh M, Saha S, Li J, et al. p53 engages the cGAS/STING cytosolic DNA sensing pathway for tumor suppression[J]. Mol Cell, 2023, 83(2): 266-280.
30
Manzano RG, Catalan-Latorre A, Brugarolas A. RB1 and TP53 co-mutations correlate strongly with genomic biomarkers of response to immunity checkpoint inhibitors in urothelial bladder cancer[J]. BMC Cancer, 2021, 21(1): 432.
[1] 陈隆, 段晓鑫, 王思卓, 董胜利. 胃癌免疫治疗的现状[J/OL]. 中华普通外科学文献(电子版), 2025, 19(03): 177-182.
[2] 陈琼, 吴卓龙, 黄吉炜. 免疫治疗在局部进展期肾癌围手术期治疗中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 418-422.
[3] 刘小丽, 罗倩, 种玉婷, 向贇, 马群宝, 莫亚斯尔·热合木拉, 黄玉蓉. 抗血管生成药物联合PD-1单抗治疗NSCLC的疗效及对T淋巴细胞亚群的影响[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 510-515.
[4] 蒋延龄, 任瑾卓, 陈俊杰, 田秀丽, 莘翼翔, 张华. 血浆细胞因子谱预测非小细胞肺癌患者临床获益和免疫相关不良事件的意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 558-563.
[5] 赵雅波, 王倩, 闫小龙, 王元勇, 何改花, 郭一泽. 早期非小细胞肺癌患者术前术后血清miR-21 和miR-937-3p表达变化的研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 345-349.
[6] 乔鲜丽, 田向阳, 周文雅, 秦泽敏, 郭姗姗, 于俊岩. 循环肿瘤DNA 对非小细胞肺癌术后复发风险的预测意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 395-400.
[7] 石娟利, 龙小丽, 相庚, 张笑, 师卓维. 非小细胞肺癌患者认知水平与癌因性疲乏的相关性分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 452-456.
[8] 徐俊洁, 罗虎, 陶锡鹏, 谢李词, 周向东. Ⅰ期非小细胞肺癌经气腔播散的临床、病理及双能量CT 参数与预测模型构建[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 213-219.
[9] 由兆磊, 井晓亮, 宗亮, 孙清超, 李德生, 张力为. 尼妥珠单抗与安罗替尼联合放化疗对晚期非小细胞肺癌的疗效分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 231-235.
[10] 曹新超, 马永峰, 马平, 贺丽君, 谢荣景. 非小细胞肺癌围手术期程序性死亡蛋白配体1 表达分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 251-255.
[11] 马秋双, 杨茗涵, 王耀林, 兰莹莹, 刘子腾, 张金库. 非小细胞肺癌中血清外泌体人源微小RNA-195-5p 的表达及临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 261-265.
[12] 王夏, 袁高峰, 卞光利, 贾会军, 韩光, 宋震, 曹主根. 循环肿瘤DNA 预测非小细胞肺癌辅助化疗后复发风险的临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 266-272.
[13] 杨钰泽, 徐家豪, 杨一石, 王明达, 杨田. 肝细胞癌新辅助治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 515-521.
[14] 龙吟, 何晓东, 廖建国, 黄珏, 张磊. 高复发风险肝癌患者术后靶向免疫治疗的安全性及疗效[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 379-386.
[15] 陈文, 张兴华, 严海涛, 张金星, 刘圣, 施海彬, 祖庆泉. 经动脉化疗栓塞术联合仑伐替尼和免疫检查点抑制剂对不可切除肝细胞癌的安全性及有效性[J/OL]. 中华介入放射学电子杂志, 2025, 13(02): 117-122.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?