切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2020, Vol. 13 ›› Issue (01) : 92 -96. doi: 10.3877/cma.j.issn.1674-6902.2020.01.023

综述

人类鼻病毒在哮喘患者气道重塑中的作用机制及临床意义
谭漫琳1, 李树钧1,()   
  1. 1. 518100 深圳,南方医科大学深圳医院呼吸内科
  • 收稿日期:2019-08-11 出版日期:2020-02-25
  • 通信作者: 李树钧
  • 基金资助:
    南方医科大学深圳医院新技术新业务(XJGX15Y35)

Mechanism and clinical significance of human rhinovirus in airway remodeling in asthmatic patients

Manlin Tan1, Shujun Li1()   

  • Received:2019-08-11 Published:2020-02-25
  • Corresponding author: Shujun Li
引用本文:

谭漫琳, 李树钧. 人类鼻病毒在哮喘患者气道重塑中的作用机制及临床意义[J]. 中华肺部疾病杂志(电子版), 2020, 13(01): 92-96.

Manlin Tan, Shujun Li. Mechanism and clinical significance of human rhinovirus in airway remodeling in asthmatic patients[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2020, 13(01): 92-96.

1
Palmenberg AC, Rathe JA, Liggett SB. Analysis of the complete genome sequences of human rhinovirus[J]. J Allergy Clin Immunol, 2010, 125(6): 1190-1199.
2
Sajjan U, Wang Q, Zhao Y, et al. Rhinovirus disrupts the barrier function of polarized airway epithelial cells[J]. Am J Respir Crit Care Med, 2008, 178(2): 1271-1281.
3
Bochkov YA, Watters K, Ashraf S, et al. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication[J]. Proc Natl Acad Sci U S A, 2015, 112(17): 5485-5490.
4
Griggs TF, Bochkov YA, Basnet S, et al. Rhinovirus C targets ciliated airway epithelial cells[J]. Respir Res, 2017, 18(1): 84.
5
Lambert KA, Prendergast LA, Dharmage SC, et al. The role of human rhinovirus (HRV) species on asthma exacerbation severity in children and adolescents[J]. J Asthma, 2018, 55(6): 596-602.
6
McCulloch DJ, Sears MH, Jacob JT, et al. Severity of rhinovirus infection in hospitalized adults is unrelated to genotype[J]. Am J Clin Pathol, 2014, 142(2): 165-172.
7
Jackson DJ, Gangnon RE, Evans MD, et al. Wheezing rhinovirus illnesses in early life predict asthma Development in high-risk children[J]. Am J Respir Crit Care Med, 2008, 178(7): 667-672.
8
Saraya T, Kimura H, Kurai D, et al. The molecular epidemiology of respiratory viruses associated with asthma attacks[J]. Medicine (Baltimore), 2017, 96(42): e8204.
9
Song DJ. Rhinovirus and childhood asthma: an update[J]. Korean J Pediatr, 2016, 59(11): 432.
10
Yoshii Y, Shimizu K, Morozumi M, et al. Detection of pathogens by real-time PCR in adult patients with acute exacerbation of bronchial asthma[J]. BMC Pulm Med, 2017, 17(1): 150.
11
Öhrmalm L, Malinovschi A, Wong M, et al. Presence of rhinovirus in the respiratory tract of adolescents and young adults with asthma without symptoms of infection[J]. Respir Med, 2016, 115: 1-6.
12
Çalışkan M, Bochkov YA, Kreiner-Møller E, et al. Rhinovirus wheezing illness and genetic risk of Childhood-onset asthma[J]. N Engl J Med, 2013, 368(15): 1398-1407.
13
马玉梅,张建华. 鼻病毒感染与支气管哮喘研究进展[J]. 中华实用儿科临床杂志,2016, 31(21): 1678-1680.
14
Bønnelykke K, Sleiman P, Nielsen K, et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations[J]. Nat Genet, 2014, 46(1): 51-55.
15
Kanazawa J, Masuko H, Yatagai Y, et al. Genetic association of the functional CDHR3 genotype with early-onset adult asthma in Japanese populations[J]. Allergol Int, 2017, 66(4): 563-567.
16
Jackson DJ, Evans MD, Gangnon RE, et al. Evidence for a Causal Relationship between Allergic Sensitization and Rhinovirus Wheezing in Early Life[J]. Am J Respir Crit Care Med, 2012, 185(3): 281-285.
17
Shariff S, Shelfoon C, Holden NS, et al. Human rhinovirus infection of epithelial cells modulates airway smooth muscle migration[J]. Am J Respir Cell Mol Biol, 2017, 56(6): 796-803.
18
Jeffery PK. Remodeling and Inflammation of bronchi in asthma and chronic obstructive pulmonary disease[J]. Proc Am Thorac Soc, 2004, 1(3): 176-183.
19
Saglani S, Payne DN, Zhu J, et al. Early detection of airway wall remodeling and eosinophilic inflammation in preschool wheezers[J]. Am J Respir Crit Care Med, 2007, 176(9): 858-864.
20
O′Reilly R, Ullmann N, Irving S, et al. Increased airway smooth muscle in preschool wheezers who have asthma at school age[J]. J Allergy Clin Immunol, 2013, 131(4): 1024-1032.
21
Hao WM, Sun SF, Tang HP. The relationship between Muc5ac high secretion and Munc18b upregulation in obese asthma[J]. Eur Rev Med Pharmacol Sci, 2018, 22(5): 1409-1414.
22
Bonser L, Erle D. Airway mucus and asthma: The role of MUC5AC and MUC5B[J]. J Clin Med, 2017, 6(12): E112.
23
Zhu L, Lee P, Lee W, et al. Rhinovirus-induced major airway mucin production involves a novel TLR3-EGFR-dependent pathway[J]. Am J Respir Cell Mol Biol, 2009, 40(5): 610-619.
24
Hewson CA, Haas JJ, Bartlett NW, et al. Rhinovirus induces MUC5AC in a human infection model and in vitro via NF-κB and EGFR pathways[J]. Eur Respir J, 2010, 36(6): 1425-1435.
25
Looi K, Troy NM, Garratt LW, et al. Effect of human rhinovirus infection on airway epithelium tight junction protein disassembly and transepithelial permeability[J]. Exp Lung Res, 2016, 42(7): 380-395.
26
Looi K, Buckley AG, Rigby PJ, et al. Effects of human rhinovirus on epithelial barrier integrity and function in children with asthma[J]. Clin Exp Allergy, 2018, 48(5): 513-524.
27
Mehta AK, Doherty T, Broide D, et al. Tumor necrosis factor family member LIGHT acts with IL-1β and TGF-β to promote airway remodeling during rhinovirus infection[J]. Allergy, 2018, 73(7): 1415-1424.
28
Herro R, Da Silva Antunes R, Aguilera AR, et al. Tumor necrosis factor superfamily 14 (LIGHT) controls thymic stromal lymphopoietin to drive pulmonary fibrosis[J]. J Allergy Clin Immunol, 2015, 136(3): 757-768.
29
da Silva Antunes R, Madge L, Soroosh P, et al. The TNF family molecules LIGHT and lymphotoxin αβ induce a distinct steroid-resistant inflammatory phenotype in human lung epithelial cells[J]. J Immunol, 2015, 195(5): 2429-2441.
30
Jakiela B, Gielicz A, Plutecka H, et al. Th2-type cytokine induced mucous metaplasia decreases susceptibility of human bronchial epithelium to rhinovirus infection[J]. Am J Respir Cell Mol Biol, 2014, 51(2): 229-241.
31
Leigh R, Oyelusi W, Wiehler S, et al. Human rhinovirus infection enhances airway epithelial cell production of growth factors involved in airway remodeling[J]. J Allergy Clin Immunol, 2008, 121(5): 1238-1245.
32
Deacon K, Knox AJ. Human airway smooth muscle cells secrete amphiregulin via bradykinin/COX-2/PGE2, inducing COX-2, CXCL8, and VEGF expression in airway epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 309(3): L237-L249.
33
Lv J, Sun B, Mai Z, et al. STAT3 potentiates the ability of airway smooth muscle cells to promote angiogenesis by regulating VEGF signalling[J].Exp Physiol, 2017, 102(5): 598-606.
34
Spurrell JC, Wiehler S, Zaheer RS, et al. Human airway epithelial cells produce IP-10 (CXCL10) in vitro and in vivo upon rhinovirus infection[J]. Am J Physiol Lung Cell Mol Physiol, 2005, 289(1): L85-L95.
35
Salter B, Pray C, Radford K, et al. Regulation of human airway smooth muscle cell migration and relevance to asthma[J]. Respir Res, 2017, 18(1): 156.
36
朱晓华,李秋根. 哮喘气道重塑中上皮间质转化及其分子调控[J]. 中南大学学报(医学版), 2018, 43(5): 566-570.
37
Zhu X, Li Q, Hu G, et al. BMS-345541 inhibits airway inflammation and epithelial Mesenchymal transition in airway remodeling of asthmatic mice[J]. Int J Mol Med, 2018, 42(4): 1998-2008.
38
Fischer KD, Hall SC, Agrawal DK. Vitamin D supplementation reduces induction of epithelial-mesenchymal transition in allergen sensitized and challenged mice[J]. PLoS One, 2016, 11(2): e0149180.
39
Minor DM, Proud D. Role of human rhinovirus in triggering human airway epithelial-mesenchymal transition[J]. Respir Res, 2017, 18(1): 110.
40
Jamieson KC, Warner SM, Leigh R, et al. Rhinovirus in the pathogenesis and clinical course of asthma[J]. Chest, 2015, 148(6): 1508-1516.
41
Lacroix C, George S, Leyssen P, et al. The enterovirus 3C protease inhibitor SG85 efficiently blocks rhinovirus replication and is not cross-resistant with rupintrivir[J]. Antimicrob Agents Chemother, 2015, 59(9): 5814-5818.
42
Leigh R, Proud D. Virus-induced modulation of lower airway diseases:Pathogenesis and pharmacologic approaches to treatment[J]. Pharmacol Ther, 2015, 148: 185-198.
43
Bernard A, Lacroix C, Cabiddu MG, et al. Exploration of the anti-enterovirus activity of a series of pleconaril/pirodavir-like compounds[J]. Antivir Chem Chemother, 2015, 24(2): 56-61.
44
Guedán A, Swieboda D, Charles M, et al. Investigation of the role of protein kinase D in human rhinovirus replication[J]. J Virol, 2017, 91(9): pii: e00217-17.
[1] 纪文鑫, 王茂, 邱春丽, 李尚鹏, 代引海. 血清外泌体circ PVT1与circ 0014606在三阴性乳腺癌中的表达及临床意义[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 267-271.
[2] 路东明, 陈建华, 艾月琴. 布地格福吸入气雾剂治疗支气管哮喘的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 361-363.
[3] 谭玲芳, 周克兵. 基于生物信息学整合鉴定与支气管哮喘相关的潜在诊断生物标志物[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 329-334.
[4] 刘汶睿, 高丽娜, 于书娴, 周建刚. 支气管哮喘患者血清IL-27与IFN-γ及肺功能相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 224-226.
[5] 刘娜, 赵然然. 支气管哮喘微量元素水平与免疫功能的相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 74-76.
[6] 李德莲, 杨鹏, 王琳. FeNO联合总IgE、CXCL13检测对儿童支气管炎继发哮喘的意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 838-840.
[7] 田臻, 刘艺, 张怡璇, 李德经. 微小RNA在AECOPD患者外周血的表达及其联合检测的意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 679-681.
[8] 何晓梅, 王兴敏, 熊浚智, 陈荣荣, 闵迁, 张克斌, 李园园. 基于转录因子的肺癌预后模型构建及临床意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 462-467.
[9] 张志华, 肖晓晨, 梅少奇. 维生素D3辅助治疗哮喘合并呼吸道感染对气道重塑及免疫功能影响[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 355-357.
[10] 张超, 岳小哲. EOS、总IgE与儿童哮喘严重程度和肺功能的相关性[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 183-186.
[11] 吴晶, 田宇红, 李盼盼, 孟激光. 早期肺康复训练在AECOPD患者机械通气治疗中的临床意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 42-46.
[12] 李江华, 李力, 何勇. 呼出气一氧化氮的研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 119-122.
[13] 谢心怡, 胡宇翔, 席凡捷. 普仑司特联合丙酸氟替卡松治疗小儿哮喘的临床意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 100-102.
[14] 尹莉莉, 李伟, 殷爱云, 张永燕. 孟鲁司特钠联合细菌溶解产物对哮喘患儿IL-33、sST2受体、EOS、ECP的影响[J]. 中华肺部疾病杂志(电子版), 2021, 14(06): 803-805.
[15] 蒋蔚茹, 徐三荣. 要努力弄清"慢性胃炎"的临床意义[J]. 中华诊断学电子杂志, 2023, 11(04): 266-270.
阅读次数
全文


摘要