1 |
Palmenberg AC, Rathe JA, Liggett SB. Analysis of the complete genome sequences of human rhinovirus[J]. J Allergy Clin Immunol, 2010, 125(6): 1190-1199.
|
2 |
Sajjan U, Wang Q, Zhao Y, et al. Rhinovirus disrupts the barrier function of polarized airway epithelial cells[J]. Am J Respir Crit Care Med, 2008, 178(2): 1271-1281.
|
3 |
Bochkov YA, Watters K, Ashraf S, et al. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication[J]. Proc Natl Acad Sci U S A, 2015, 112(17): 5485-5490.
|
4 |
Griggs TF, Bochkov YA, Basnet S, et al. Rhinovirus C targets ciliated airway epithelial cells[J]. Respir Res, 2017, 18(1): 84.
|
5 |
Lambert KA, Prendergast LA, Dharmage SC, et al. The role of human rhinovirus (HRV) species on asthma exacerbation severity in children and adolescents[J]. J Asthma, 2018, 55(6): 596-602.
|
6 |
McCulloch DJ, Sears MH, Jacob JT, et al. Severity of rhinovirus infection in hospitalized adults is unrelated to genotype[J]. Am J Clin Pathol, 2014, 142(2): 165-172.
|
7 |
Jackson DJ, Gangnon RE, Evans MD, et al. Wheezing rhinovirus illnesses in early life predict asthma Development in high-risk children[J]. Am J Respir Crit Care Med, 2008, 178(7): 667-672.
|
8 |
Saraya T, Kimura H, Kurai D, et al. The molecular epidemiology of respiratory viruses associated with asthma attacks[J]. Medicine (Baltimore), 2017, 96(42): e8204.
|
9 |
Song DJ. Rhinovirus and childhood asthma: an update[J]. Korean J Pediatr, 2016, 59(11): 432.
|
10 |
Yoshii Y, Shimizu K, Morozumi M, et al. Detection of pathogens by real-time PCR in adult patients with acute exacerbation of bronchial asthma[J]. BMC Pulm Med, 2017, 17(1): 150.
|
11 |
Öhrmalm L, Malinovschi A, Wong M, et al. Presence of rhinovirus in the respiratory tract of adolescents and young adults with asthma without symptoms of infection[J]. Respir Med, 2016, 115: 1-6.
|
12 |
Çalışkan M, Bochkov YA, Kreiner-Møller E, et al. Rhinovirus wheezing illness and genetic risk of Childhood-onset asthma[J]. N Engl J Med, 2013, 368(15): 1398-1407.
|
13 |
马玉梅,张建华. 鼻病毒感染与支气管哮喘研究进展[J]. 中华实用儿科临床杂志,2016, 31(21): 1678-1680.
|
14 |
Bønnelykke K, Sleiman P, Nielsen K, et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations[J]. Nat Genet, 2014, 46(1): 51-55.
|
15 |
Kanazawa J, Masuko H, Yatagai Y, et al. Genetic association of the functional CDHR3 genotype with early-onset adult asthma in Japanese populations[J]. Allergol Int, 2017, 66(4): 563-567.
|
16 |
Jackson DJ, Evans MD, Gangnon RE, et al. Evidence for a Causal Relationship between Allergic Sensitization and Rhinovirus Wheezing in Early Life[J]. Am J Respir Crit Care Med, 2012, 185(3): 281-285.
|
17 |
Shariff S, Shelfoon C, Holden NS, et al. Human rhinovirus infection of epithelial cells modulates airway smooth muscle migration[J]. Am J Respir Cell Mol Biol, 2017, 56(6): 796-803.
|
18 |
Jeffery PK. Remodeling and Inflammation of bronchi in asthma and chronic obstructive pulmonary disease[J]. Proc Am Thorac Soc, 2004, 1(3): 176-183.
|
19 |
Saglani S, Payne DN, Zhu J, et al. Early detection of airway wall remodeling and eosinophilic inflammation in preschool wheezers[J]. Am J Respir Crit Care Med, 2007, 176(9): 858-864.
|
20 |
O′Reilly R, Ullmann N, Irving S, et al. Increased airway smooth muscle in preschool wheezers who have asthma at school age[J]. J Allergy Clin Immunol, 2013, 131(4): 1024-1032.
|
21 |
Hao WM, Sun SF, Tang HP. The relationship between Muc5ac high secretion and Munc18b upregulation in obese asthma[J]. Eur Rev Med Pharmacol Sci, 2018, 22(5): 1409-1414.
|
22 |
Bonser L, Erle D. Airway mucus and asthma: The role of MUC5AC and MUC5B[J]. J Clin Med, 2017, 6(12): E112.
|
23 |
Zhu L, Lee P, Lee W, et al. Rhinovirus-induced major airway mucin production involves a novel TLR3-EGFR-dependent pathway[J]. Am J Respir Cell Mol Biol, 2009, 40(5): 610-619.
|
24 |
Hewson CA, Haas JJ, Bartlett NW, et al. Rhinovirus induces MUC5AC in a human infection model and in vitro via NF-κB and EGFR pathways[J]. Eur Respir J, 2010, 36(6): 1425-1435.
|
25 |
Looi K, Troy NM, Garratt LW, et al. Effect of human rhinovirus infection on airway epithelium tight junction protein disassembly and transepithelial permeability[J]. Exp Lung Res, 2016, 42(7): 380-395.
|
26 |
Looi K, Buckley AG, Rigby PJ, et al. Effects of human rhinovirus on epithelial barrier integrity and function in children with asthma[J]. Clin Exp Allergy, 2018, 48(5): 513-524.
|
27 |
Mehta AK, Doherty T, Broide D, et al. Tumor necrosis factor family member LIGHT acts with IL-1β and TGF-β to promote airway remodeling during rhinovirus infection[J]. Allergy, 2018, 73(7): 1415-1424.
|
28 |
Herro R, Da Silva Antunes R, Aguilera AR, et al. Tumor necrosis factor superfamily 14 (LIGHT) controls thymic stromal lymphopoietin to drive pulmonary fibrosis[J]. J Allergy Clin Immunol, 2015, 136(3): 757-768.
|
29 |
da Silva Antunes R, Madge L, Soroosh P, et al. The TNF family molecules LIGHT and lymphotoxin αβ induce a distinct steroid-resistant inflammatory phenotype in human lung epithelial cells[J]. J Immunol, 2015, 195(5): 2429-2441.
|
30 |
Jakiela B, Gielicz A, Plutecka H, et al. Th2-type cytokine induced mucous metaplasia decreases susceptibility of human bronchial epithelium to rhinovirus infection[J]. Am J Respir Cell Mol Biol, 2014, 51(2): 229-241.
|
31 |
Leigh R, Oyelusi W, Wiehler S, et al. Human rhinovirus infection enhances airway epithelial cell production of growth factors involved in airway remodeling[J]. J Allergy Clin Immunol, 2008, 121(5): 1238-1245.
|
32 |
Deacon K, Knox AJ. Human airway smooth muscle cells secrete amphiregulin via bradykinin/COX-2/PGE2, inducing COX-2, CXCL8, and VEGF expression in airway epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 309(3): L237-L249.
|
33 |
Lv J, Sun B, Mai Z, et al. STAT3 potentiates the ability of airway smooth muscle cells to promote angiogenesis by regulating VEGF signalling[J].Exp Physiol, 2017, 102(5): 598-606.
|
34 |
Spurrell JC, Wiehler S, Zaheer RS, et al. Human airway epithelial cells produce IP-10 (CXCL10) in vitro and in vivo upon rhinovirus infection[J]. Am J Physiol Lung Cell Mol Physiol, 2005, 289(1): L85-L95.
|
35 |
Salter B, Pray C, Radford K, et al. Regulation of human airway smooth muscle cell migration and relevance to asthma[J]. Respir Res, 2017, 18(1): 156.
|
36 |
朱晓华,李秋根. 哮喘气道重塑中上皮间质转化及其分子调控[J]. 中南大学学报(医学版), 2018, 43(5): 566-570.
|
37 |
Zhu X, Li Q, Hu G, et al. BMS-345541 inhibits airway inflammation and epithelial Mesenchymal transition in airway remodeling of asthmatic mice[J]. Int J Mol Med, 2018, 42(4): 1998-2008.
|
38 |
Fischer KD, Hall SC, Agrawal DK. Vitamin D supplementation reduces induction of epithelial-mesenchymal transition in allergen sensitized and challenged mice[J]. PLoS One, 2016, 11(2): e0149180.
|
39 |
Minor DM, Proud D. Role of human rhinovirus in triggering human airway epithelial-mesenchymal transition[J]. Respir Res, 2017, 18(1): 110.
|
40 |
Jamieson KC, Warner SM, Leigh R, et al. Rhinovirus in the pathogenesis and clinical course of asthma[J]. Chest, 2015, 148(6): 1508-1516.
|
41 |
Lacroix C, George S, Leyssen P, et al. The enterovirus 3C protease inhibitor SG85 efficiently blocks rhinovirus replication and is not cross-resistant with rupintrivir[J]. Antimicrob Agents Chemother, 2015, 59(9): 5814-5818.
|
42 |
Leigh R, Proud D. Virus-induced modulation of lower airway diseases:Pathogenesis and pharmacologic approaches to treatment[J]. Pharmacol Ther, 2015, 148: 185-198.
|
43 |
Bernard A, Lacroix C, Cabiddu MG, et al. Exploration of the anti-enterovirus activity of a series of pleconaril/pirodavir-like compounds[J]. Antivir Chem Chemother, 2015, 24(2): 56-61.
|
44 |
Guedán A, Swieboda D, Charles M, et al. Investigation of the role of protein kinase D in human rhinovirus replication[J]. J Virol, 2017, 91(9): pii: e00217-17.
|