1 |
van Rossum PSN, Juan-Cruz C, Stam B, et al. Severe radiation-induced lymphopenia during concurrent chemoradiotherapy for stage Ⅲ non-small cell lung cancer: external validation of two prediction models[J]. Front Oncol, 2023, 13: 1278723.
|
2 |
杨玖,刘志远,朱诺,等. rhGM-CSF预防非小细胞肺癌放疗所致急性放射性食管炎的效果观察[J]. 海军医学杂志,2023, 44(3): 296-300.
|
3 |
Núñez-Benjumea FJ, González-García S, Moreno-Conde A, et al. Benchmarking machine learning approaches to predict radiation-induced toxicities in lung cancer patientss[J]. Clin Transl Radiat Oncol, 2023, 41: 100640.
|
4 |
梁莹,兰美,鲜欣欣,等. 鼻咽癌患者放疗后皮肤毒性的多模态超声研究[J]. 中华超声影像学杂志,2024, 33(4): 315-319.
|
5 |
Ju Z, Pan H, Qu C, et al. Lactobacillus rhamnosus GG ameliorates radiation-induced lung fibrosis via lncRNASNHG17/PTBP1/NICD axis modulations[J]. Biol Direct, 2023, 18(1): 2.
|
6 |
Yan Y, Fu J, Kowalchuk RO, et al. Exploration of radiation-induced lung injury, from mechanism to treatment: a narrative reviews[J]. Transl Lung Cancer Res, 2022, 11(2): 307-322.
|
7 |
Yu H, Wu H, Wang W, et al. Machine learning to build and validate a model for radiation pneumonitis prediction in patients with non-small cell lung cancers[J]. Clin Cancer Res, 2019, 25(14): 4343-4350.
|
8 |
杨昕,刘青旭. 放射治疗患者血清白细胞介素-1β和白细胞介素-18的表达水平及其临床意义[J]. 临床内科杂志,2025, 42(5): 401-403.
|
9 |
Riely GJ, Wood DE, Ettinger DS, et al. Non-small cell lung cancer, version 4.2024, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2024, 22(4): 249-274.
|
10 |
Cox JD, Stetz J, Pajak TF, et al. Toxicity criteria of the radiation therapy oncology group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC)s[J]. Int J Radiat Oncol Biol Phys, 1995, 31(5): 1341-1346.
|
11 |
Łazar-Poniatowska M, Bandura A, Dziadziuszko R, et al. Concurrent chemoradiotherapy for stage Ⅲ non-small-cell lung cancer: recent progress and future perspectives (a narrative review)[J]. Transl Lung Cancer Res, 2021, 10(4): 2018-2031.
|
12 |
Kuipers ME, van Doorn-Wink KCJ, Hiemstra PS, et al. Predicting radiation-induced lung injury in patients with lung cancer: Challenges and opportunities[J]. Int J Radiat Oncol Biol Phys, 2024, 118(3): 639-649.
|
13 |
罗楠,钱柳,海丽且姆·艾力,等. Ⅰ、Ⅲ期非小细胞肺癌患者放疗所致放射性肺炎CT特点及识别[J]. 中国CT和MRI杂志,2025, 23(2): 74-76.
|
14 |
Zhang XZ, Chen MJ, Fan PM, et al. Prediction of the mechanism of sodium butyrate against radiation-induced lung injury in non-small cell lung cancer based on network pharmacology and molecular dynamic simulations and molecular dynamic simulations[J]. Front Oncol, 2022, 12: 809772.
|
15 |
Kim SY, Park S, Cui R, et al. NXC736 attenuates radiation-induced lung fibrosis via regulating NLRP3/IL-1β signaling pathway[J]. Int J Mol Sci, 2023, 24(22): 16265.
|
16 |
Arroyo-Hernández M, Maldonado F, Lozano-Ruiz F, et al. Radiation-induced lung injury: current evidence[J]. BMC Pulm Med, 2021, 21(1): 9.
|
17 |
谭惜颜. 淋巴瘤综合治疗药物性肺损伤后放射性肺炎发生风险预测[J]. 实用癌症杂志,2022, 37(4): 693-696.
|
18 |
Li X, Yorke E, Jackson A, et al. Clinical and dosimetric risk factors associated with radiation-induced lung toxicities after multiple courses of lung stereotactic body radiation therapy[J]. Adv Radiat Oncol, 2023, 9(1): 101284.
|
19 |
Flakus MJ, Kent SP, Wallat EM, et al. Metrics of dose to highly ventilated lung are predictive of radiation-induced pneumonitis in lung cancer patients[J]. Radiother Oncol, 2023, 182: 109553.
|
20 |
Kim SY, Park S, Cui R, et al. NXC736 attenuates radiation-induced lung fibrosis via regulating NLRP3/IL-1β signaling pathway[J]. Int J Mol Sci, 2023, 24(22): 16265.
|
21 |
Wang S, Campbell J, Stenmark MH, et al. A model combining age, equivalent uniform dose and IL-8 may predict radiation esophagitis in patients with non-small cell lung cancer[J]. Radiother Oncol, 2018, 126(3): 506-510.
|
22 |
Wang X, Xu F, Kou H, et al. Stromal cell-derived small extracellular vesicles enhance radioresistance of prostate cancer cells via interleukin-8-induced autophagy[J]. J Extracell Vesicles, 2023, 12(7): e12342.
|
23 |
Tang Z, Hu J, Li XC, et al. A subset of neutrophils activates anti-tumor immunity and inhibits non-small-cell lung cancer progression[J]. Dev Cell, 2025, 60(3): 379-395.
|
24 |
Chu HH, Kobayashi Y, Bui DV, et al. CCL4 regulates eosinophil activation in eosinophilic airway inflammation[J]. Int J Mol Sci, 2022, 23(24): 16149.
|
25 |
Chen R, Ma L, Jiang C, et al. Expression and potential role of CCL4 in CD8+ T cells in NSCLC[J]. Clin Transl Oncol, 2022, 24(12): 2420-2431.
|
26 |
Zhai DY, Huang J, Hu Y, et al. Ionizing radiation-induced tumor cell-derived microparticles prevent lung metastasis by remodeling the pulmonary immune microenvironment[J]. Int J Radiat Oncol Biol Phys, 2022, 114(3): 502-515.
|
27 |
陈然,杨新月,刘倩,等. CCL4在肿瘤微环境中影响免疫逃逸的研究进展[J]. 中国肺癌杂志,2024, 27(8): 613-621.
|
28 |
Su L, Dong Y, Wang Y, et al. Potential role of senescent macrophages in radiation-induced pulmonary fibrosis[J]. Cell Death Dis, 2021, 12(6): 527.
|
29 |
Shi Z, Liu J, Qin J, et al. Astilbin alleviates radiation-induced pulmonary fibrosis via circPRKCE targeting the TGF-beta/Smad7 pathway to inhibit epithelial-mesenchymal transition[J]. Biomedicines, 2025, 13(3): 689.
|
30 |
Verma S, Dutta A, Dahiya A, et al. Quercetin-3-rutinoside alleviates radiation-induced lung inflammation and fibrosis via regulation of NF-κB/TGF-β1 signaling[J]. Phytomedicine, 2022, 99: 154004.
|