切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2025, Vol. 18 ›› Issue (04) : 603 -608. doi: 10.3877/cma.j.issn.1674-6902.2025.04.019

论著

循环细胞因子谱预测非小细胞肺癌患者放射性肺纤维化的临床意义
武军霞1, 霍刚1,(), 李姣姣1, 杨会会1, 马铭2, 张王峰3   
  1. 1719000 榆林,西安交通大学第一附属医院榆林医院检验科
    2719000 榆林,西安交通大学第一附属医院榆林医院肿瘤科
    3719000 榆林,西安交通大学附属第一医院榆林医院呼吸科
  • 收稿日期:2025-02-13 出版日期:2025-08-25
  • 通信作者: 霍刚
  • 基金资助:
    陕西省自然科学基础研究计划项目(2022JQ-941)

Clinical significance of circulating cytokine profiles in predicting radioactive pulmonary fibrosis in patients with non-small cell lung cancer

Junxia Wu1, Gang Huo1,(), Jiaojiao Li1, Huihui Yang1, Ming Ma2, Wangfeng Zhang3   

  1. 1Department of Clinical Laboratory, The First Affiliated Hospital of Xi′an Jiaotong University Yulin Hospital, Yulin 719000, China
    2Department of Oncology, The First Affiliated Hospital of Xi′an Jiaotong University Yulin Hospital, Yulin 719000, China
    3Department of Respiratory, The First Affiliated Hospital of Xi′an Jiaotong University Yulin Hospital, Yulin 719000, China
  • Received:2025-02-13 Published:2025-08-25
  • Corresponding author: Gang Huo
引用本文:

武军霞, 霍刚, 李姣姣, 杨会会, 马铭, 张王峰. 循环细胞因子谱预测非小细胞肺癌患者放射性肺纤维化的临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 603-608.

Junxia Wu, Gang Huo, Jiaojiao Li, Huihui Yang, Ming Ma, Wangfeng Zhang. Clinical significance of circulating cytokine profiles in predicting radioactive pulmonary fibrosis in patients with non-small cell lung cancer[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2025, 18(04): 603-608.

目的

分析循环细胞因子谱预测非小细胞肺癌(non-small cell lung cancer, NSCLC)患者放射性肺纤维化(radiation-induced pulmonary fibrosis, RILF)的临床意义。

方法

选择2021年1月至2024年12月我院收治的根治性胸部放疗Ⅰ~Ⅲ期NSCLC患者86例,按7︰3分为训练集63例及验证集23例。收集患者临床资料,通过人细胞因子/趋化磁珠面板试剂盒、酶联免疫吸附测定试剂盒检测循环细胞因子,记录患者RILF≥2级(RILF2)发生情况。

结果

训练集RILF2 11例(17.46%),验证集RILF2 4例(17.39%)(χ2=0.001,P=0.994)。患者RILF2中位发病时间4.90个月,Logistic、LASSO回归分析显示,平均肺剂量(mean lung dose, MLD)(HR:3.674,95%CI:1.240~10.887)、白细胞介素-8(interleukin-8, IL-8)(HR:0.231,95%CI:0.060~0.887)、C-C趋化因子配体4(C-C chemokine ligand 4, CCL4)(HR:0.204,95%CI:0.053~0.777)、转化生长因子-β1(transforming growth factor-β1, TGF-β1)(HR:21.831,95%CI:1.609~296.240)为NSCLC患者RILF2的影响因素。列线图预测训练集及验证集的RILF2,受试者工作特征曲线下面积分别为0.884(95%CI:0.779~0.989)和0.841(95%CI:0.672~0.990)。Hosmer-Lemeshow检验结果显示拟合良好(P>0.05),高风险阈值分别为0.05~0.73及0.09~0.68。

结论

细胞因子MLD、IL-8、CCL4、TGF-β1及剂量学因素RILF2列线图预测NSCLC患者RILF具有临床意义。

Objective

To analyze the clinical significance of circulating cytokine profiling in predicting radiation-induced pulmonary fibrosis (RILF) in patients with non-small cell lung cancer (NSCLC).

Methods

A total of 86 patients with stage Ⅰ-Ⅲ NSCLC who underwent radical thoracic radiotherapy in the First Affiliated Hospital of Xi'an Jiaotong University Yulin Hospital from January 2021 to December 2024 were selected and divided into a training set of 63 cases and a validation set of 23 cases in a ratio of 7︰3. The clinical data of the patients were collected. Circulating cytokines were detected by the human cytokine/chemotactic magnetic bead panel kit and the enzyme-linked immunosorbent assay kit. The occurrence of RILF≥ grade 2 (RILF2) in the patients was recorded.

Results

There were 11 cases (17.46%) of RILF2 in the training set and 4 cases (17.39%) of RILF2 in the validation set (χ2=0.001, P=0.994). The median onset time of RILF2 in patients was 4.90 months. Logistic and LASSO regression analyses showed that the mean lung dose(MLD) (HR: 3.674, 95%CI: 1.240~10.887), interleukin-8 (IL-8) (HR: 0.231, 95%CI: 0.060~0.887), C-C chemokine ligand 4 (CCL4) (HR: 0.204, 95%CI: 0.053~0.777), transforming growth factor-β1 (TGF-β1) (HR: 21.831, 95%CI: 1.609~296.240) are the influencing factors of RILF2 in NSCLC patients. The nomogram predicted the RILF2 of the training set and the validation set, and the area under the receiver operating characteristic curve was 0.884 (95%CI: 0.779~0.989) and 0.841 (95%CI: 0.672~0.990), respectively. The Hosmer-Lemeshow test results showed a good fit (P>0.05), and the high-risk thresholds were 0.05-0.73 and 0.09-0.68, respectively.

Conclusion

The nomogram of cytokines MLD, IL-8, CCL4, TGF-β1 and the dosimetric factor RILF2 has clinical significance in predicting RILF in NSCLC patients.

表1 NSCLC患者临床资料比较
表2 单因素Logistic回归分析NSCLC患者RILF2影响因素
图1 RILF2列线图预测模型注:MLD为平均肺剂量;IL-8为白细胞介素-8;CCL4为C-C趋化因子配体4;TGF-β1为转化生长因子-β1;RILF2为放射性肺纤维化≥2级
1
van Rossum PSN, Juan-Cruz C, Stam B, et al. Severe radiation-induced lymphopenia during concurrent chemoradiotherapy for stage Ⅲ non-small cell lung cancer: external validation of two prediction models[J]. Front Oncol, 2023, 13: 1278723.
2
杨玖,刘志远,朱诺,等. rhGM-CSF预防非小细胞肺癌放疗所致急性放射性食管炎的效果观察[J]. 海军医学杂志2023, 44(3): 296-300.
3
Núñez-Benjumea FJ, González-García S, Moreno-Conde A, et al. Benchmarking machine learning approaches to predict radiation-induced toxicities in lung cancer patientss[J]. Clin Transl Radiat Oncol, 2023, 41: 100640.
4
梁莹,兰美,鲜欣欣,等. 鼻咽癌患者放疗后皮肤毒性的多模态超声研究[J]. 中华超声影像学杂志2024, 33(4): 315-319.
5
Ju Z, Pan H, Qu C, et al. Lactobacillus rhamnosus GG ameliorates radiation-induced lung fibrosis via lncRNASNHG17/PTBP1/NICD axis modulations[J]. Biol Direct, 2023, 18(1): 2.
6
Yan Y, Fu J, Kowalchuk RO, et al. Exploration of radiation-induced lung injury, from mechanism to treatment: a narrative reviews[J]. Transl Lung Cancer Res, 2022, 11(2): 307-322.
7
Yu H, Wu H, Wang W, et al. Machine learning to build and validate a model for radiation pneumonitis prediction in patients with non-small cell lung cancers[J]. Clin Cancer Res, 2019, 25(14): 4343-4350.
8
杨昕,刘青旭. 放射治疗患者血清白细胞介素-1β和白细胞介素-18的表达水平及其临床意义[J]. 临床内科杂志2025, 42(5): 401-403.
9
Riely GJ, Wood DE, Ettinger DS, et al. Non-small cell lung cancer, version 4.2024, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2024, 22(4): 249-274.
10
Cox JD, Stetz J, Pajak TF, et al. Toxicity criteria of the radiation therapy oncology group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC)s[J]. Int J Radiat Oncol Biol Phys, 1995, 31(5): 1341-1346.
11
Łazar-Poniatowska M, Bandura A, Dziadziuszko R, et al. Concurrent chemoradiotherapy for stage Ⅲ non-small-cell lung cancer: recent progress and future perspectives (a narrative review)[J]. Transl Lung Cancer Res, 2021, 10(4): 2018-2031.
12
Kuipers ME, van Doorn-Wink KCJ, Hiemstra PS, et al. Predicting radiation-induced lung injury in patients with lung cancer: Challenges and opportunities[J]. Int J Radiat Oncol Biol Phys, 2024, 118(3): 639-649.
13
罗楠,钱柳,海丽且姆·艾力,等. Ⅰ、Ⅲ期非小细胞肺癌患者放疗所致放射性肺炎CT特点及识别[J]. 中国CT和MRI杂志2025, 23(2): 74-76.
14
Zhang XZ, Chen MJ, Fan PM, et al. Prediction of the mechanism of sodium butyrate against radiation-induced lung injury in non-small cell lung cancer based on network pharmacology and molecular dynamic simulations and molecular dynamic simulations[J]. Front Oncol, 2022, 12: 809772.
15
Kim SY, Park S, Cui R, et al. NXC736 attenuates radiation-induced lung fibrosis via regulating NLRP3/IL-1β signaling pathway[J]. Int J Mol Sci, 2023, 24(22): 16265.
16
Arroyo-Hernández M, Maldonado F, Lozano-Ruiz F, et al. Radiation-induced lung injury: current evidence[J]. BMC Pulm Med, 2021, 21(1): 9.
17
谭惜颜. 淋巴瘤综合治疗药物性肺损伤后放射性肺炎发生风险预测[J]. 实用癌症杂志2022, 37(4): 693-696.
18
Li X, Yorke E, Jackson A, et al. Clinical and dosimetric risk factors associated with radiation-induced lung toxicities after multiple courses of lung stereotactic body radiation therapy[J]. Adv Radiat Oncol, 2023, 9(1): 101284.
19
Flakus MJ, Kent SP, Wallat EM, et al. Metrics of dose to highly ventilated lung are predictive of radiation-induced pneumonitis in lung cancer patients[J]. Radiother Oncol, 2023, 182: 109553.
20
Kim SY, Park S, Cui R, et al. NXC736 attenuates radiation-induced lung fibrosis via regulating NLRP3/IL-1β signaling pathway[J]. Int J Mol Sci, 2023, 24(22): 16265.
21
Wang S, Campbell J, Stenmark MH, et al. A model combining age, equivalent uniform dose and IL-8 may predict radiation esophagitis in patients with non-small cell lung cancer[J]. Radiother Oncol, 2018, 126(3): 506-510.
22
Wang X, Xu F, Kou H, et al. Stromal cell-derived small extracellular vesicles enhance radioresistance of prostate cancer cells via interleukin-8-induced autophagy[J]. J Extracell Vesicles, 2023, 12(7): e12342.
23
Tang Z, Hu J, Li XC, et al. A subset of neutrophils activates anti-tumor immunity and inhibits non-small-cell lung cancer progression[J]. Dev Cell, 2025, 60(3): 379-395.
24
Chu HH, Kobayashi Y, Bui DV, et al. CCL4 regulates eosinophil activation in eosinophilic airway inflammation[J]. Int J Mol Sci, 2022, 23(24): 16149.
25
Chen R, Ma L, Jiang C, et al. Expression and potential role of CCL4 in CD8+ T cells in NSCLC[J]. Clin Transl Oncol, 2022, 24(12): 2420-2431.
26
Zhai DY, Huang J, Hu Y, et al. Ionizing radiation-induced tumor cell-derived microparticles prevent lung metastasis by remodeling the pulmonary immune microenvironment[J]. Int J Radiat Oncol Biol Phys, 2022, 114(3): 502-515.
27
陈然,杨新月,刘倩,等. CCL4在肿瘤微环境中影响免疫逃逸的研究进展[J]. 中国肺癌杂志2024, 27(8): 613-621.
28
Su L, Dong Y, Wang Y, et al. Potential role of senescent macrophages in radiation-induced pulmonary fibrosis[J]. Cell Death Dis, 2021, 12(6): 527.
29
Shi Z, Liu J, Qin J, et al. Astilbin alleviates radiation-induced pulmonary fibrosis via circPRKCE targeting the TGF-beta/Smad7 pathway to inhibit epithelial-mesenchymal transition[J]. Biomedicines, 2025, 13(3): 689.
30
Verma S, Dutta A, Dahiya A, et al. Quercetin-3-rutinoside alleviates radiation-induced lung inflammation and fibrosis via regulation of NF-κB/TGF-β1 signaling[J]. Phytomedicine, 2022, 99: 154004.
[1] 谌莉, 冉永红, 傅仕艳, 李文润, 冉新泽, 郝玉徽. 放射性肺纤维化细胞和分子机制的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(03): 265-270.
[2] 刘小丽, 罗倩, 种玉婷, 向贇, 马群宝, 莫亚斯尔·热合木拉, 黄玉蓉. 抗血管生成药物联合PD-1单抗治疗NSCLC的疗效及对T淋巴细胞亚群的影响[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 510-515.
[3] 蒋延龄, 任瑾卓, 陈俊杰, 田秀丽, 莘翼翔, 张华. 血浆细胞因子谱预测非小细胞肺癌患者临床获益和免疫相关不良事件的意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 558-563.
[4] 刘学飞, 赵东, 李婷婷, 李佳浓, 葛亚楠, 李博. RB1基因状态对非小细胞肺癌免疫检查点抑制剂联合化疗反应的意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 580-585.
[5] 赵雅波, 王倩, 闫小龙, 王元勇, 何改花, 郭一泽. 早期非小细胞肺癌患者术前术后血清miR-21 和miR-937-3p表达变化的研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 345-349.
[6] 乔鲜丽, 田向阳, 周文雅, 秦泽敏, 郭姗姗, 于俊岩. 循环肿瘤DNA 对非小细胞肺癌术后复发风险的预测意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 395-400.
[7] 石娟利, 龙小丽, 相庚, 张笑, 师卓维. 非小细胞肺癌患者认知水平与癌因性疲乏的相关性分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 452-456.
[8] 徐俊洁, 罗虎, 陶锡鹏, 谢李词, 周向东. Ⅰ期非小细胞肺癌经气腔播散的临床、病理及双能量CT 参数与预测模型构建[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 213-219.
[9] 李杰, 冉永红, 郝玉徽. miR-21 靶向环腺苷酸应答元件结合蛋白样蛋白2 加重放射性肺纤维化的作用机制[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 220-225.
[10] 由兆磊, 井晓亮, 宗亮, 孙清超, 李德生, 张力为. 尼妥珠单抗与安罗替尼联合放化疗对晚期非小细胞肺癌的疗效分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 231-235.
[11] 曹新超, 马永峰, 马平, 贺丽君, 谢荣景. 非小细胞肺癌围手术期程序性死亡蛋白配体1 表达分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 251-255.
[12] 马秋双, 杨茗涵, 王耀林, 兰莹莹, 刘子腾, 张金库. 非小细胞肺癌中血清外泌体人源微小RNA-195-5p 的表达及临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 261-265.
[13] 王夏, 袁高峰, 卞光利, 贾会军, 韩光, 宋震, 曹主根. 循环肿瘤DNA 预测非小细胞肺癌辅助化疗后复发风险的临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 266-272.
[14] 张莉莉, 许峰, 谢勋鹏, 张学良, 季红华, 季雯绯. 贝伐珠单抗辅助化疗非小细胞肺癌的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 284-288.
[15] 吕巧, 闵迁, 姜露, 陈黔, 彭锦, 代黔. 过表达KLF7 对非小细胞肺癌细胞增殖凋亡的影响[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 1-7.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?